The miR-302 cluster-IRFs-IRF1AS axis regulates influenza A virus replication in a species-specific manner.

mBio

MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Non-coding RNAs are crucial orchestrators in the intricate dance between viruses and host cells, among which the expression and function of enhancer RNAs (eRNAs) during influenza virus infection remain largely unexplored. This study utilized whole transcriptome high-throughput sequencing to investigate the molecular mechanisms underpinning the species-specific regulation of influenza virus replication by the miR-302 cluster-IRFs-IRF1AS axis both and . Mechanistically, the CTNNB1-induced miR-302 cluster targeted various interferon regulatory factors (mainly IRF1 and IRF2) with varying affinities and silencing efficiencies, except for miR-302e and miR-302f. Furthermore, miR-302 cluster-IRFs triggered the induction of interferon-induced hub genes and hub lncRNAs defined through weighted gene co-expression network analysis. Importantly, the intricate interplay between IRFs, direct targets of the miR-302 cluster, and IRF1AS, an indirect target, in terms of gene loci and transcriptional regulation reveals a crosstalk in the miR-302 cluster-IRFs-IRF1AS axis. That is, on the one hand, IRF1 and IRF7 bind to the promoter of IRF1AS to promote the transcription of eRNAs. On the other hand, IRF1AS functions as an enhancer cluster that orchestrates and -regulates the transcription of IRF1, thereby rapidly amplifying the antiviral immune response initiated by miR-302 cluster-IRFs. In conclusion, we have unveiled a novel regulatory network governed by the miR-302 cluster-IRFs-IRF1AS, offering fresh perspectives on immune regulatory mechanisms.

Importance: Non-coding RNAs play a crucial role in regulating the three-dimensional structure of chromatin. They influence gene expression through various mechanisms and thereby contribute to the onset and progression of influenza A virus pathogenicity. Our comprehensive whole transcriptome sequencing analysis reveals a novel finding: the species-specific regulation of influenza virus replication by the miR-302 cluster-IRFs-IRF1AS axis. Our findings indicate that the miR-302 cluster-IRFs axis facilitates the transcription of key hub genes and hub lncRNAs, most of which significantly inhibit influenza virus replication. Notably, the downstream IRF1AS assembles into an enhancer cluster, orchestrating and -regulating the transcription of IRF1 to activate the interferon system. This investigation enhances our understanding of the regulatory network underlying viral infections and offers novel insights into immune regulatory mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345190PMC
http://dx.doi.org/10.1128/mbio.01375-25DOI Listing

Publication Analysis

Top Keywords

influenza virus
24
mir-302 cluster-irfs-irf1as
20
cluster-irfs-irf1as axis
16
virus replication
16
mir-302 cluster-irfs
12
mir-302
10
non-coding rnas
8
species-specific regulation
8
regulation influenza
8
replication mir-302
8

Similar Publications

Frequent emergence of respiratory viruses with pandemic potential, like SARS-CoV-2 or influenza, underscores the need for broad-spectrum prophylaxis. Existing vaccines show reduced efficacy against newly emerged variants, and the ongoing risk of new outbreaks highlights the importance of alternative strategies to prevent infection and viral transmission. As respiratory viruses primarily enter through the nose, formulations targeting the nasal epithelium are attractive candidates to neutralize pathogens and thus prevent or minimize infection.

View Article and Find Full Text PDF

Influenza A viruses remain a global health threat, yet no universal antibody therapy exists. Clinical programs have centered on neutralizing mAbs, only to be thwarted by strain specificity and rapid viral escape. We instead engineered three non-neutralizing IgG2a mAbs that target distinct, overlapping epitopes within the conserved N terminus of the M2 ectodomain (M2e).

View Article and Find Full Text PDF

Functional, immunogenetic, and structural convergence in influenza immunity between humans and macaques.

Sci Transl Med

September 2025

Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

Human B cell immunity to the influenza hemagglutinin (HA) stem, a universal vaccine target, is often stereotyped and immunogenetically restricted, posing hurdles to study outside of humans. Here, we show that cynomolgus macaques vaccinated with an HA stem immunogen elicit humanlike public B cell lineages targeting two major conserved sites of vulnerability, the central stem and anchor epitopes. Central stem antibodies were predominantly derived from V1-138, the macaque homolog of human V1-69, a V gene preferentially used in human central stem broadly neutralizing antibodies (bnAbs).

View Article and Find Full Text PDF

Unlabelled: There is a need for the development of broad-spectrum antiviral compounds that can act as first-line therapeutic countermeasures to emerging viral infections. Host-directed approaches present a promising avenue of development and carry the benefit of mitigating risks of viral escape mutants. We have previously found the SKI (super killer) complex to be a broad-spectrum, host-target with our lead compound ("UMB18") showing activity against influenza A virus, coronaviruses, and filoviruses.

View Article and Find Full Text PDF

Development of duplex crystal digital PCR (dPCR) assay for detection and differentiation of NDRV and MDRV.

Vet Anim Sci

December 2025

Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China.

Muscovy duck reovirus (MDRV) and Novel duck reovirus (NDRV) are highly infectious diseases of waterfowl, causing significant harm to the global poultry industry. Early detection and diagnosis of NDRV and MDRV in clinical samples are crucial for effectively preventing and controlling these diseases. This study developed a duplex crystal digital PCR (dPCR) assay for the differential detection of NDRV and MDRV.

View Article and Find Full Text PDF