Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is a great challenge to discover novel chemical reactions suitable for biological analysis in a living system. The development of novel protein thiol blocking agents is a crucial need for exploring protein thiol functions in protein refolding, signal transduction, and redox regulation. We are always keen on seeking novel chemical reactions applied to endogenous biological macromolecules or protein thiol sensing, blocking, and labeling. In the present work, we have successfully developed a novel agent to block protein thiol by enhanced electron-withdrawing inductive effects. This sensing and blocking process was detailedly monitored by UV-, fluorescent spectra, and SDS-Page gel separation. The spectral studies demonstrated that the agent could react ultrafastly with thiol within seconds at μM level. Furthermore, fluorescent imaging in cells and in vivo was further used for the validation of its ability to sensing and blocking thiol, providing evidence of downregulated protein thiols in Parkinson's disease. The enhanced electron-withdrawing inductive effect strategy in this work may provide a general guideline for designing protein thiol agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118245PMC
http://dx.doi.org/10.1002/smo.20230022DOI Listing

Publication Analysis

Top Keywords

protein thiol
24
sensing blocking
16
electron-withdrawing inductive
12
inductive effects
8
protein
8
thiol
8
thiol sensing
8
novel chemical
8
chemical reactions
8
enhanced electron-withdrawing
8

Similar Publications

S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.

View Article and Find Full Text PDF

CysB in the Multiverse of Functions: Regulatory Roles in Cysteine Biosynthesis and Beyond.

Front Biosci (Landmark Ed)

August 2025

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

CysB is a member of the large bacterial LysR-type transcriptional regulator (LTTR) protein family. Like the majority of LTTRs, CysB functions as a homotetramer in which each subunit has an N-terminal winged-helix-turn-helix (wHTH) DNA-binding domain connected to an effector-binding domain by a helical hinge region. CysB is best known for its role in regulating the expression of genes associated with sulfur uptake and biosynthesis of cysteine in Gram-negative species such as and .

View Article and Find Full Text PDF

Label-free immunoassay based on chemiluminescence-functionalized magnetic mesoporous nanoparticles for rapid detection of neuron-specific enolase.

Mikrochim Acta

September 2025

The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Binhu Hospital of Hefei, Hefei, 230061, P. R. China.

Lung cancer, as one of the cancers with the highest morbidity and mortality rates in the world, requires accurate detection of its vital serum marker, neuron-specific enolase (NSE), which is a key challenge for early detection of lung cancer. However, traditional chemiluminescence immunoassay (CLIA) methods rely on labeled antibodies (Abs) and suffer from complex operations and high costs. In this work, a label-free CLIA based on CL-functionalized mesoporous magnetic nanoparticles (CuFeO@mSiO-Cys-Luminol-Au NPs) is developed for the rapid and sensitive detection of NSE.

View Article and Find Full Text PDF

Amino acid (AA) detection is fundamental for cellular function, balancing translation demands, biochemical pathways, and signaling networks. Although the GCN2 and mTORC1 pathways are known to regulate AA sensing, the global cellular response to AA deprivation remains poorly understood, particularly in non-transformed cells, which may exhibit distinct adaptive strategies compared with cancer cells. Here, we employed murine pluripotent embryonic stem (ES) cells as a model system to dissect responses to AA stress.

View Article and Find Full Text PDF

Mollugin reacts with phenol thiol but not produce modification on cysteine discovered by a phenol thiol probe.

Front Cell Dev Biol

August 2025

Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Electrophilic compounds from natural products (NPs) and metabolites can covalently modify the cysteines of target proteins to induce biological activities. To facilitate the discovery of novel NPs and metabolites, chemical probes with various thiol groups-mimicking the reactivity of cysteine-have been developed. These probes are designed to react with electrophilic groups of NPs and metabolites in an electrophilic addition mechanism, with the resulting adducts having molecular masses which equal to the sum of the probe and the target compound.

View Article and Find Full Text PDF