Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The global dissemination and infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become a worldwide crisis with staggering confirmed cases and death tolls. Although prophylactic vaccines are widely applied to curb the spread of the virus, these protections are greatly weakened by the emergence of SARS-CoV-2 variants. Non-structural protein 12 (NSP12) of SARS-CoV-2 is an RNA-dependent RNA polymerase that plays an essential role in viral replication and transcription, representing a promising target for drug development. Currently, extensive drugs are designed to specifically target and inhibit NSP12 activity, while highly infectious and drug-resistant variants have significantly compromised their efficacy. Here, we identified that arsenic trioxide (ATO) could specifically reduce not only WT SARS-CoV-2 NSP12 but also mutant NSP12 levels, along with low toxicity. Moreover, the reduction of NSP12 was caused by its robust ubiquitination and subsequent degradation via the ubiquitin-proteasome pathway after ATO treatment. Of note, STIP1 homology and U-box containing protein 1 was found to be the E3 ligase responsible for the ubiquitination and degradation of NSP12 by ATO. In short, our findings provide a potential intervention to restrict virus replication and may broaden the scope of therapeutic application for ATO.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jgv.0.002121DOI Listing

Publication Analysis

Top Keywords

arsenic trioxide
8
sars-cov-2 nsp12
8
nsp12
7
sars-cov-2
5
trioxide promote
4
promote sars-cov-2
4
nsp12 protein
4
protein degradation
4
degradation global
4
global dissemination
4

Similar Publications

Overcoming resistance in RET-altered cancers through rational inhibitor design and combination therapies.

Bioorg Chem

September 2025

Department of Pharmacy, Personalized Drug Research and Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:

RET tyrosine kinase, a key regulator of cellular signaling, is abnormally activated due to mutations or fusions in various cancers, making it an important therapeutic target. Traditional multi-kinase inhibitors (MKIs, such as cabozantinib and vandetanib) exhibit significant side effects due to non-selective inhibition of targets like VEGFR, and also suffer from resistance associated with RET mutations (e.g.

View Article and Find Full Text PDF

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that, for the western blots shown in Fig. 4C, the two left lanes in the 'Fibrillarin' gel slice appeared to be strikingly similar to the mirrored two right lanes in the 'Actin' gel slice, albeit the orientations of the blots were horizontally reversed, such that data which were intended to have shown the results of differently performed experiments appeared to have been derived from the same original source. Moreover, the control β-actin blots featured in Fig.

View Article and Find Full Text PDF

Arsenic trioxide (ATO) in combination with all-trans retinoic acid (ATRA) has been shown to be effective in both adult and pediatric patients with acute promyelocytic leukemia (APL). Addition of ATO to conventional chemotherapy could lead to a reduction in the doses of cytotoxic agents, but the long-term safety of ATO is not fully understood, especially in children. The Japan Children's Cancer Group conducted a risk-stratified prospective study to investigate safety and efficacy of ATO in children with newly diagnosed APL by replacing all three intensification phases with ATO.

View Article and Find Full Text PDF

Background: Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML) characterized by the t(15;17) translocation, leading to the PML-RARA fusion gene. While treatable, APL presents significant challenges, particularly in resource-constrained settings where delays in diagnosis and access to specialized care may impact outcomes. This study aims to describe the clinical presentation, treatment outcomes, and survival data for pediatric APL patients.

View Article and Find Full Text PDF

Polyploid giant cancer cells (PGCCs) play an important role in regulating heterogeneity, growth, and chemotherapy resistance of malignant tumors. Paxillin is a unique cytoskeletal protein and drives persistent migration. In this study, we investigated the molecular mechanism by which paxillin regulates the invasion and migration of PGCCs with daughter cells (PDCs).

View Article and Find Full Text PDF