Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polycystic ovary syndrome (PCOS), the most common endocrine disease in women of reproductive age, severely impacts female fertility due to chronic anovulation and currently lacks effective clinical treatment strategies. The extracellular matrix (ECM) is a three-dimensional, non-cellular framework comprising molecules such as collagens, elastin, and laminin, which support the ovarian structure and provide extracellular signals to cells. Changes in ECM localization and composition can disturb local biochemical pathways, impair folliculogenesis, and reduce the fertility of women. This paper explores innovative therapeutic approaches for PCOS by investigating the mechanisms underlying PCOS pathogenesis due to ECM dysregulation. This includes ECM deposition-induced inflammation and fibrosis, impaired ECM degradation, altered mechanical forces in ECM remodeling, and disrupted interactions between granulosa cells and the ECM. In the second part, we present therapeutic strategies informed by these pathogenic mechanisms, integrating insights from basic and clinical research. More importantly, this paper introduces innovative therapies for POCS that regulate ECM. These therapeutic strategies represent future development directions. In the final section, we summarize the advantages, potential challenges, and prospects of ECM-based treatments for improving fertility in PCOS. Overall, this review underscores the emerging significance of ECM-targeted interventions in unraveling PCOS pathophysiology and paves the way for the development of more precise and effective fertility-preserving therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229020PMC
http://dx.doi.org/10.1186/s13036-025-00533-9DOI Listing

Publication Analysis

Top Keywords

therapeutic strategies
12
extracellular matrix
8
pcos pathogenesis
8
ecm
8
pcos
6
matrix dysregulation
4
dysregulation pcos
4
therapeutic
4
pathogenesis therapeutic
4
strategies
4

Similar Publications

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF

Patients' sense of safety and well-being may be affected in numerous ways while being cared for in hospitals. Often, feelings of alienation arise, as private spaces like the home are inaccessible. One aspect that impacts patients' safety and well-being is the design of the physical care environment.

View Article and Find Full Text PDF

This review highlights the integration of drug repurposing and nanotechnology-driven delivery strategies as innovative approaches to enhance the antifungal activity of statins against mucosal candidiasis, providing a framework for future translational research and clinical application. The rising prevalence of antifungal resistance and virulence factors of Candida albicans underscore the limitations of current therapies. Statins, commonly used as lipid-lowering agents, have emerged as attractive repurposed drug candidates due to their ability to interfere with fungal ergosterol biosynthesis and Ras-mediated signaling pathways.

View Article and Find Full Text PDF

The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.

View Article and Find Full Text PDF