Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Insomnia is a common sleep disorder worldwide, and oxidative stress and mitochondrial damage are closely related to insomnia. This study aimed to investigate the mechanism by which senegenin exerts neuroprotective effects in regulating oxidative stress and mitochondrial damage in insomnia. In vivo, EEG/EMG analysis confirmed the successful establishment of insomnia rat models; Nissl and HE staining and electron microscopy were used to evaluate the pathological changes of neurons and mitochondria in rat brain tissue. The expression of oxidative stress and sleep factors was assessed. In vitro, an oxidative damage cell model was established to measure oxidative stress-related parameters; the protective concentration of senegenin against oxidative damage was determined using the CCK-8 assay, and the effects of senegenin on the expression of Keap1/Nrf2 and PINK1/Parkin, key signaling pathways involved in oxidative stress and mitochondrial damage, were analyzed. During insomnia, wake is prolonged, and NREM and REM are shortened; learning memory and exploration behavior are impaired, oxidative stress factor expression is changed, and mitochondria are damaged. Brain tissue from insomnia rats showed decreased BDNF, 5-HT1A, GABA-T, and GAD and increased expression of 5-HT2A and Glu. Keap1, PINK1, Parkin, and LC3 expression increased and Nrf2, NQO1, HO-1, and p62 expression decreased in oxidatively injured cells. Senegenin showed a dose-response regulatory effect after the intervention. Senegenin may exert neuroprotective effects in insomnia by improving oxidative stress and mitochondrial damage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-025-05170-3DOI Listing

Publication Analysis

Top Keywords

oxidative stress
28
stress mitochondrial
16
mitochondrial damage
16
oxidative
10
regulating oxidative
8
insomnia
8
neuroprotective effects
8
brain tissue
8
oxidative damage
8
stress
7

Similar Publications

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

20(R)-ginsenoside Rg3 Inhibits Neuroinflammation Induced by Cerebral Ischemia/Reperfusion Injury by Regulating the Toll-Like Receptor 4/Myeloid Differentiation Factor-88/Nuclear Factor Kappa B Signaling Pathway.

Chem Biodivers

September 2025

School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.

20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.

View Article and Find Full Text PDF

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF

Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.

View Article and Find Full Text PDF