98%
921
2 minutes
20
Critical network states and neural plasticity enable adaptive behavior in dynamic environments, supporting efficient information processing and experience-dependent learning. Synaptic-weight-based Hebbian plasticity and homeostatic synaptic scaling are key mechanisms that enable memory while stabilizing network dynamics. However, the role of structural plasticity as a homeostatic mechanism remains less consistently reported, particularly under activity inhibition, leading to an incomplete understanding of its functional impact. In this study, we combined live-cell microscopy of eGFP-labeled neurons in mouse organotypic entorhinal-hippocampal tissue cultures (Thy1-eGFP mice of both sexes) with computational modeling to investigate how synapse-number-based structural plasticity responds to activity perturbations and interacts with homeostatic synaptic scaling. Tracking individual dendritic segments, we found that inhibiting excitatory neurotransmission does not monotonically regulate dendritic spine density. Specifically, inhibition of AMPA receptors with 200 nM 2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX) increased spine density, whereas complete AMPA receptor blockade with 50 μM NBQX reduced it. Motivated by these findings, we developed network simulations incorporating a biphasic structural plasticity rule governing activity-dependent synapse formation. These simulations showed that the biphasic rule maintains neural activity homeostasis under stimulation and permits either synapse formation or synapse loss depending on the degree of activity deprivation. Homeostatic synaptic scaling further modulated recurrent connectivity, network activity, and structural plasticity outcomes. It reduced stimulation-triggered synapse loss by downscaling synaptic weights and rescued silencing-induced synapse loss by upscaling recurrent input, thus reactivating silent neurons. The interaction between these mechanisms provides a mechanistic explanation for divergent findings in the literature. In summary, homeostatic synaptic scaling and homeostatic structural plasticity dynamically compete and compensate for each other, ensuring efficient and robust control of firing rate homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227201 | PMC |
http://dx.doi.org/10.7554/eLife.88376 | DOI Listing |
Front Neural Circuits
September 2025
Neuroscience Institute, National Research Council (CNR), Pisa, Italy.
Neural circuits sculpt their structure and modify the strength of their connections to effectively adapt to the external stimuli throughout life. In response to practice and experience, the brain learns to distinguish previously undetectable stimulus features recurring in the external environment. The unconscious acquisition of improved perceptual abilities falls into a form of implicit learning known as perceptual learning.
View Article and Find Full Text PDFFront Neural Circuits
September 2025
Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
Introduction: Understanding how neural networks process complex patterns of information is crucial for advancing both neuroscience and artificial intelligence. To investigate fundamental principles of neural computation, we examined whether dissociated neuronal cultures, one of the most primitive living neural networks, exhibit regularity sensitivity beyond mere stimulus-specific adaptation and deviance detection.
Methods: We recorded activity to oddball electrical stimulation paradigms from dissociated rat cortical neurons cultured on high-resolution CMOS microelectrode arrays.
Angew Chem Int Ed Engl
September 2025
Shaanxi Key Laboratory of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Department of Chemistry and Chemical Engineering, ShaanXi Normal University, Xi'an, 710062, P.R. China.
Rhodamine derivatives exhibiting inverted open-closed form fluorescence behavior redefines conventional photochemical paradigms while illuminating new structure-property relationships and fascinating application potentials. Herein, we report a donor-acceptor engineering strategy that activates closed form emission in rhodamines, achieving unprecedented Stokes shifts (>280 nm) while overcoming aggregation-caused quenching. The new class of rhodamines with inverted open-close form emission behavior are created through simultaneous substitution of N,N-diethyl groups with indole (donor) and conversion of spiro-lactam to benzene sulfonamide (acceptor).
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.
Recent breakthroughs in tumor biology have redefined the tumor microenvironment as a dynamic ecosystem in which the nervous system has emerged as a pivotal regulator of oncogenesis. In addition to their classical developmental roles, neural‒tumor interactions orchestrate a sophisticated network that drives cancer initiation, stemness maintenance, metabolic reprogramming, and therapeutic evasion. This crosstalk operates through multimodal mechanisms, including paracrine signaling, electrophysiological interactions, and structural innervation guided by axon-derived guidance molecules.
View Article and Find Full Text PDFScand J Surg
September 2025
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
This narrative review examines gender-affirming healthcare in the Nordic countries, highlighting historical developments, legal frameworks, epidemiological trends, and current clinical practices. Transgender healthcare dates back to the early 20th century and gained international attention in the early 1950s following one of the first widely publicized gender-affirming surgeries performed in Denmark. Since then, care models have evolved, supported by policy, research, and clinical practice across Europe and North America.
View Article and Find Full Text PDF