98%
921
2 minutes
20
During Treponema pallidum (T. pallidum) infection, m6A modification negatively regulates inflammatory responses in macrophages. However, whether m6A modification participates in the regulation of macrophage M2 polarization during T. pallidum infection remains unclear. Using THP-1-derived macrophages as a model, this study investigated the mechanism by which T. pallidum lipoprotein TpF1 promotes macrophage M2 polarization and analyzed the effect of TpF1 on m6A modification in macrophages and the regulatory role of methyltransferase-like 14 (METTL14). Results showed that upon TpF1 stimulation, expression of M2 macrophage markers CD206 and PPARγ was significantly increased, and levels of anti-inflammatory factors TGF-β and CCL18 were upregulated at both mRNA and protein levels. In contrast, expression of M1 marker CD80 and pro-inflammatory factors IL-1β and TNF-α was significantly decreased at both mRNA and protein levels, indicating that TpF1 promotes macrophage polarization toward the M2 phenotype. Meanwhile, TpF1 upregulated global m6A levels in macrophages, accompanied by increased expression of m6A methyltransferase METTL14 and reader protein YTHDF2. Knocking down METTL14 with siRNA inhibited TpF1-induced elevation of global m6A levels and macrophage M2 polarization. Mechanistically, TpF1 promoted macrophage M2 polarization by activating the NF-κB pathway, as demonstrated by the inhibitory effect of NF-κB-specific inhibitors on M2 polarization. Further studies revealed that METTL14 knockdown significantly suppressed TpF1-induced NF-κB activation. These findings indicate that T. pallidum lipoprotein TpF1 promotes macrophage M2 polarization via METTL14-mediated regulation of the NF-κB signaling pathway, offering new insights into the immune evasion mechanisms of Treponema pallidum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jleuko/qiaf099 | DOI Listing |
ACS Nano
September 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev
Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.
View Article and Find Full Text PDFStem Cells Int
August 2025
Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
Postmenopausal osteoporosis (PMOP) is a common bone metabolic disorder in middle-aged and elderly women, yet its pathogenesis remains unclear. This study investigates the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) deficiency on bone homeostasis to provide insight into the mechanisms underlying PMOP. Sixteen female SD rats were randomly assigned to Sham and ovariectomized (OVX) groups.
View Article and Find Full Text PDFFront Chem
August 2025
Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea.
In this work, a fluorescent probe, VanPI-CarE, with a vanillin-pyridine-imidazole core structure was developed for carboxylesterase (CarE) detection in macrophage polarization during bone homeostasis. The probe responded to CarE with a distinct fluorescence reporting signal at 490 nm upon excitation at 355 nm. Tests in solution showed the advantages of VanPI-CarE, including high sensitivity, excellent stability under various working conditions, high selectivity, and low cytotoxicity.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
Introduction: Oral squamous cell carcinoma (OSCC) has a poor prognosis due to its immunosuppressive tumor microenvironment (TME), in which tumor-associated macrophages (TAMs) play a pivotal role in promoting disease progression and therapeutic resistance. This study examines whether Prussian blue nanoparticles (PB NPs) could reprogram TAMs and block tumor-stroma communication in OSCC.
Methods: PB NPs were synthesized using polyvinylpyrrolidone-assisted coprecipitation and characterized by transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy.
Bioact Mater
December 2025
Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
Craniofacial muscles are essential for a variety of functions, including fine facial expressions. Severe injuries to these muscles often lead to more devastating consequences than limb muscle injuries, resulting in the loss of critical functions such as mastication and eyelid closure, as well as facial aesthetic impairment. Therefore, the development of targeted repair strategies for craniofacial muscle injuries is crucial.
View Article and Find Full Text PDF