Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sepsis-associated encephalopathy (SAE) is a severe neurological syndrome marked by widespread brain dysfunctions due to sepsis, yet the underlying mechanisms remain elusive. The current study, using a Lipopolysaccharide (LPS)-induced septic rat model, revealed the hyperphosphorylation of tau and cognitive impairments, accompanied by the release of inflammatory cytokines and activation of glial cells in the hippocampal dentate gyrus region of septic rats. Proteomic and bioinformatic analyses identified C-X-C motif chemokine ligand 10(CXCL10) as a central regulator of neuroinflammation. LPS triggered CXCL10 secretion in astrocytes, and astrocyte-conditioned medium from LPS-treated astrocytes induced tau hyperphosphorylation and synaptic deficits. Recombinant CXCL10 recapitulated these effects in vitro and in vivo. Blocking CXCL10-CXCR3 interaction reversed tau phosphorylation, synaptic impairment, and cognitive decline. Mechanistically, CXCL10-CXCR3 interaction activated CaMKII, driving tau hyperphosphorylation, while CaMKII inhibition restored synaptic protein levels. These findings establish CXCL10 as a key driver of tau pathology in SAE and suggest CXCL10-CXCR3 as a therapeutic target for sepsis-induced cognitive impairments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12264-025-01445-wDOI Listing

Publication Analysis

Top Keywords

tau hyperphosphorylation
12
cognitive impairments
12
cxcl10-cxcr3 interaction
8
tau
6
astrocyte-derived cxcl10
4
cxcl10 induces
4
induces neuronal
4
neuronal tau
4
hyperphosphorylation
4
cognitive
4

Similar Publications

Background: Neurofibrillary tangles, composed of hyperphosphorylated tau, have been implicated in the cognitive impairments observed in Alzheimer's disease. While the precise mechanism remains elusive, cognitive deficits in Alzheimer's disease have been associated with disrupted brain network activity. To investigate this mechanism, researchers have developed several tau transgenic models.

View Article and Find Full Text PDF

Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.

View Article and Find Full Text PDF

Background/aim: Tau protein, which is crucial for sustaining the cytoskeletal network by assisting microtubule construction, contributes significantly to the pathophysiology of Alzheimer's disease (AD). The hyperphosphorylation of tau causes it to detach from microtubules (MTs), leading to the formation of neurofibrillary tangles (NFTs) in neurons, which ultimately results in cell death. Thionine (TH), a cationic phenothiazine-structured compound, has been the topic of extensive research due to its interesting physicochemical properties.

View Article and Find Full Text PDF

Role of GSK-3 Inhibition in Alzheimer's Disease Therapy.

Curr Alzheimer Res

September 2025

Department of Biochemistry, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia.

A serine/threonine kinase with a wide variety of substrates, Glycogen Synthase Kinase-3 (GSK-3) is widely expressed. GSK-3 is a key player in cell metabolism and signaling, modulating numerous cellular functions and playing significant roles in both healthy and diseased states. The two histopathological features of Alzheimer's disease, the intracellular neurofibrillary tangles composed of hyperphosphorylated tau, and the extracellular senile plaques composed of beta-amyloid, have been linked to GSK-3.

View Article and Find Full Text PDF

Therapeutic potential of small peptides in Alzheimer's disease: Advances in memory restoration and targeted delivery systems.

Neuropeptides

September 2025

Department of Physiology and Cell Biology, The National Institute for Biotechnology in the Negev, and the School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Despite extensive research into Alzheimer's disease (AD), few therapeutic strategies have successfully addressed its core pathology at the synaptic level. Small peptides represent a promising class of therapeutic agents capable of modulating key molecular pathways involved in amyloid toxicity, tau hyperphosphorylation, and synaptic degeneration. Their unique ability to cross biological barriers, interact with intracellular targets, and be modified for enhanced stability positions them as viable candidates for next-generation treatments targeting cognitive decline in AD.

View Article and Find Full Text PDF