98%
921
2 minutes
20
Bacterial cellulose is a promising biodegradable alternative to synthetic polymers due to the robust mechanical properties of its nano-fibrillar building blocks. However, its full potential of mechanical properties remains unrealized, primarily due to the challenge of aligning nanofibrils at the macroscale. Additionally, the limited diffusion of other nano-fillers within the three-dimensional nanofibrillar network impedes the development of multifunctional bacterial cellulose-based nanosheets. Here, we report a simple, single-step, and scalable bottom-up strategy to biosynthesize robust bacterial cellulose sheets with aligned nanofibrils and bacterial cellulose-based multifunctional hybrid nanosheets using shear forces from fluid flow in a rotational culture device. The resulting bacterial cellulose sheets display high tensile strength (up to ~ 436 MPa), flexibility, foldability, optical transparency, and long-term mechanical stability. By incorporating boron nitride nanosheets into the liquid nutrient media, we fabricate bacterial cellulose-boron nitride hybrid nanosheets with even better mechanical properties (tensile strength up to ~ 553 MPa) and thermal properties (three times faster rate of heat dissipation compared to control samples). This biofabrication approach yielding aligned, strong, and multifunctional bacterial cellulose sheets would pave the way towards applications in structural materials, thermal management, packaging, textiles, green electronics, and energy storage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12215450 | PMC |
http://dx.doi.org/10.1038/s41467-025-60242-1 | DOI Listing |
Beilstein J Nanotechnol
August 2025
Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, Jilin, People's Republic of China.
To address the issue of biological pollution in cellulose triacetate (CTA) membranes during seawater desalination, silver (Ag) nanoparticles were incorporated onto the CTA surface using polydopamine (PDA). PDA, which contains phenolic and amino groups, exhibits excellent adhesiveness and provides active sites for the attachment and reduction for Ag nanoparticles. Various characterizations confirm the successful introduction of Ag nanoparticles onto the surface of the PDA-modified CTA (PCTA) membrane and the preservation of CTA microstructures.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China. Electronic address:
Emodin is a natural anthraquinone derivative with poor water solubility, which limits its antibacterial activity. The purpose of this work is to investigate the antibacterial activity of emodin nanocrystals (EMD-NCs) with different particle sizes against Staphylococcus aureus (S. aureus) and explores its underlying mechanisms.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:
Development of effective, safe, and degradable food packaging is essential to meet the demands of consumers and to ensure the continued growth of the food industry. In this study, superabsorbent bioactive aerogels based on cellulose and polyvinyl alcohol combined with the antibacterial bioactive extracts extracted from Portulaca oleracea were fabricated for the preservation of chilled meats. The main physicochemical and mechanical properties of the bioactive aerogels were characterized and evaluated.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.
View Article and Find Full Text PDFMacromol Biosci
September 2025
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain.
This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.
View Article and Find Full Text PDF