Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cancer stem cells (CSCs) are a highly plastic subpopulation of tumor cells with capabilities for self-renewal, therapy resistance, and metastasis. Recent evidence highlights lipid metabolic reprogramming as a central mechanism supporting these malignant traits. This review synthesizes current findings on key lipid metabolic processes in CSCs-including lipid uptake via CD36, intracellular storage in lipid droplets, de novo fatty acid synthesis by fatty acid synthase (FASN), fatty acid oxidation (FAO) regulated by carnitine palmitoyltransferase 1A (CPT1A), and cholesterol biosynthesis through the mevalonate pathway. Although many of these pathways are active in bulk cancer cells, CSCs demonstrate greater functional reliance on them, leading to enhanced survival, redox balance, and adaptation to therapy. These metabolic preferences vary by cancer type, underscoring the need for context-specific approaches. Moreover, stromal components of the tumor microenvironment (TME), such as cancer-associated fibroblasts, adipocytes, and mesenchymal stem cells, modulate CSC lipid metabolism through paracrine signals and substrate transfer, reinforcing CSC maintenance and drug resistance. Therapeutic strategies targeting lipid metabolism-such as inhibition of SCD1, CPT1A, and HMG-CoA reductase-have shown promising preclinical results in selectively depleting CSC populations and sensitizing tumors to treatment. However, challenges remain in preserving normal stem cell function, which also depends on lipid pathways. This review underscores the emerging significance of lipid metabolism as both a hallmark and vulnerability of CSCs, offering opportunities for novel targeted cancer therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13402-025-01081-6DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
12
stem cells
12
fatty acid
12
lipid
9
cancer stem
8
cells cscs
8
lipid metabolic
8
cancer
5
cells
5
metabolism cancer
4

Similar Publications

A scoping review on the possible immunometabolic properties of the furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid.

Am J Clin Nutr

September 2025

COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Circulating levels of 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF), a metabolite derived from dietary furan fatty acids primarily found in marine food sources, have long been recognized as biomarkers for fish intake. However, elevated CMPF levels are also observed in patients with type 2 diabetes or chronic kidney disease and in healthy people associated with a reduced infection risk, suggesting potential bioactive roles in metabolism and immune function. Yet, the possible causal mechanisms behind these associations are unknown.

View Article and Find Full Text PDF

Processed Meat Health Risks: Pathways and Dietary Solutions.

J Nutr

September 2025

School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia; Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250

Background: Red and processed meat consumption is extensively linked to chronic disease risk in observational studies, with robust meta-analyses demonstrating significant positive associations for colorectal, breast, endometrial, and lung cancers, type 2 diabetes (T2DM), cardiovascular disease (CVD), and all-cause mortality. Dose-response relationships indicate elevated risks even at moderate intakes. Moreover, processed meats consistently show stronger detrimental effects than unprocessed red meats.

View Article and Find Full Text PDF

Lipid Metabolism and Immune Crosstalk in Fish Gut-Liver Axis: Insights from SOCS8 Knockout and Dietary Stress Models.

Fish Shellfish Immunol

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, State Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, Universi

Metaflammation, a chronic immune response triggered by metabolic dysregulation, poses significant threats to gut-liver homeostasis in aquaculture species. To understand the progression of metaflammation, it is crucial to examine the role of SOCS8 deficiency in socs8 zebrafish, as this species may serve as a disease model for metabolic disorders due to the gradual dysregulation of immunity, metabolism, and the gut microbiota observed in them. This study examines the immune-metabolic crosstalk in grass carp, subjected to soybean meal-induced enteritis, and in socs8 zebrafish under genetic and dietary stress.

View Article and Find Full Text PDF

Background: Benzene, a ubiquitous industrial chemical, is a well-established environmental toxin associated with hematological disorders such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), which are characterized by impaired hematopoiesis and bone marrow failure. This study investigates the role of ferroptosis, an iron-dependent form of cell death, in benzene-induced hematotoxicity, focusing on the repression of glutathione peroxidase 4 (GPX4), a critical regulator of ferroptosis.

Materials And Methods: Male C57BL/6 mice were exposed to benzene at various doses over six weeks.

View Article and Find Full Text PDF

The role of lipid metabolism disorder in the progression and treatment of ocular vascular diseases.

Surv Ophthalmol

September 2025

Department of Ophthalmology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang 261041, China.

Lipid metabolism plays a critical role in maintaining normal physiological functions and is strongly linked to the pathogenesis of ocular vascular diseases. This review examines how disorders of lipid metabolism drive progression in ocular vascular diseases, including diabetic retinopathy, age-related macular degeneration, retinal vascular occlusive diseases, and retinopathy of prematurity. These disorders are classified as a related group due to their common feature of impaired ocular vascularization.

View Article and Find Full Text PDF