Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Chronic cerebral hypoperfusion (CCH) is a pathophysiological hallmark of vascular dementia, the second most common form of dementia. CCH exerts complex and subtle detrimental effects on both the brain and peripheral systems. Irisin is a polypeptide primarily expressed in contracting skeletal muscle and the brain. However, its role in CCH remains unclear. This study aimed to investigate the effects of CCH on irisin metabolism and whether increasing endogenous irisin levels through forced aerobic exercise (FAE) could confer neuroprotection against secondary brain injury induced by CCH.

Methods: A total of 212 adult (8-week-old) male C57BL/6 mice were randomly assigned to either sham or CCH groups. CCH was induced by bilateral common carotid artery stenosis. FAE consisted of daily swimming (1 h/day, 5 days/week, for 5 weeks). Two subgroups of CCH mice received daily intraperitoneal injections of either DMSO or cilengitide trifluoroacetate (CT), a selective inhibitor of integrin αV and β5 (the irisin receptor), during FAE. ELISA and western blotting were used to assess irisin expression, while western blotting, TUNEL, immunofluorescence staining, and neurobehavioral tests were conducted to evaluate neurofunctional outcomes.

Results: Hippocampal and serum irisin levels were progressively reduced in CCH mice. Additionally, expression of integrins αV and β5 in hippocampal neurons, microglia, and astrocytes decreased post-CCH. FAE effectively enhanced both peripheral and central irisin expression. Increased endogenous irisin levels inhibited CCH-induced hippocampal neuronal apoptosis and microglial activation, thereby promoting neuronal survival and partially ameliorating white matter injury. These changes led to improvements in memory, motor function, and anxiety- and depression-like behaviors. Mechanistically, the neuroprotective effects of irisin were mediated by enhanced hippocampal neuronal and microglial autophagy through increased AMPK phosphorylation and decreased mTOR phosphorylation-effects abolished by CT treatment.

Conclusion: Our findings demonstrate that enhancing endogenous irisin via FAE mitigates CCH-induced neuronal apoptosis, microglial activation, cognitive impairment, and affective behavioral deficits by promoting autophagy through the integrin αVβ5/AMPK/mTOR signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205520PMC
http://dx.doi.org/10.1186/s12974-025-03493-5DOI Listing

Publication Analysis

Top Keywords

hippocampal neuronal
12
neuronal apoptosis
12
endogenous irisin
12
irisin levels
12
irisin
10
cognitive impairment
8
chronic cerebral
8
cerebral hypoperfusion
8
cch
8
cch mice
8

Similar Publications

GABA receptor availability in clinical high-risk and first-episode psychosis: a [C]Ro15-4513 positron emission tomography study.

Mol Psychiatry

September 2025

Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.

Disrupted gamma-aminobutyric acid (GABA) neurotransmission may contribute to the pathophysiology of schizophrenia. Reductions in hippocampal GABAergic neurons have been found in schizophrenia, and increased hippocampal perfusion has been described in schizophrenia and in people at clinical high-risk for psychosis (CHRp). We have also found decreases in hippocampal GABA receptors containing the α5 subunit (GABARα5) in a well-validated neurodevelopmental rat model of relevance for schizophrenia.

View Article and Find Full Text PDF

TXNIP promotes ferroptosis through NCOA4 mediated ferritinophagy.

Biochim Biophys Acta Mol Cell Res

September 2025

Department of Physiology and Pathophysiology, University of Manitoba, Health Sciences Centre, Winnipeg, Canada. Electronic address:

Ferroptosis is a recently discovered lytic form of cell death that is triggered by iron-driven excessive lipid peroxidation and depletion of glutathione and glutathione peroxidase-4 (GPX4). This form of cell death has been linked to a wide range of conditions from cancer to neurodegenerative diseases. Using murine hippocampal HT22 neurons, we aimed to investigate the underlying mechanisms of glutamate-mediated ferroptosis.

View Article and Find Full Text PDF

Objective: This study aims to investigate the effects of anaesthesia and surgical procedures on the cognitive function of both young and aged mice. It will also explore the role and mechanisms of c-Fos expression in altering hippocampal neuron excitability and its relationship with perioperative neurocognitive disorders in mice.

Methods: In this study, we used a murine laparotomy model to assess cognitive behavioural changes in both young and aged mice at 1, 3, and 7 days post-surgery.

View Article and Find Full Text PDF

Phosphodiesterase 9 (PDE9) is an enzyme that hydrolyzes cyclic guanosine monophosphate (cGMP)-a second messenger that regulates neuronal plasticity and memory function. PDE9 inhibition has been shown to enhance cognitive function in rodents, underlining the potential of PDE9 inhibitors (PDE9Is) as novel therapeutics for cognitive dysfunction. Considering the critical role of nitric oxide (NO)-cGMP signaling cascade in acetylcholine (ACh) release, the combination of PDE9Is and acetylcholinesterase inhibitors may synergistically elevate ACh levels in the brain.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is marked by amyloid-beta (Aβ) plaque buildup, tau hyperphosphorylation, neuroinflammation, neuronal loss, and impaired adult hippocampal neurogenesis (AHN). Taurine has shown protective effects in various cellular and animal models of AD, though the molecular mechanisms of free taurine and its effects in patient-derived models remain underexplored. This study evaluates taurine's therapeutic potential using integrated in silico, in vitro, in vivo, and ex vivo approaches.

View Article and Find Full Text PDF