Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study systematically compares the predictive performance of single machine learning (ML) models (KNN, Bayesian ridge regression, decision tree) and ensemble learning methods (bagging, boosting, stacking) for quantifying the rheological properties of mineral powder-modified asphalt, specifically the complex shear modulus (G*) and the phase angle (). We used two emulsifiers and three mineral powders for fabricating modified emulsified asphalt and conducting rheological property tests, respectively. Dynamic shear rheometer (DSR) test data were preprocessed using the local outlier factor (LOF) algorithm, followed by K-fold cross-validation (K = 5) and Bayesian optimization to tune model hyperparameters. This framework uniquely employs cross-validated predictions from base models as input features for the meta-learner, reducing information leakage and enhancing generalization. Traditional single ML models struggle to characterize accurately as a result, and an innovative stacking model was developed, integrating predictions from four heterogeneous base learners-KNN, decision tree (DT), random forest (RF), and XGBoost-with a Bayesian ridge regression meta-learner. Results demonstrate that ensemble models outperform single models significantly, with the stacking model achieving the highest accuracy ( = 0.9727 for G* and = 0.9990 for ). Shapley additive explanations (SHAP) analysis reveals temperature and mineral powder type as key factors, addressing the "black box" limitation of ML in materials science. This study validates the stacking model as a robust framework for optimizing asphalt mixture design, offering insights into material selection and pavement performance improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195200PMC
http://dx.doi.org/10.3390/ma18122913DOI Listing

Publication Analysis

Top Keywords

stacking model
12
rheological properties
8
mineral powder
8
bagging boosting
8
boosting stacking
8
single machine
8
machine learning
8
learning models
8
bayesian ridge
8
ridge regression
8

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Predicting complex time series with deep echo state networks.

Chaos

September 2025

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.

View Article and Find Full Text PDF

Magnetic two-dimensional van der Waals (vdWs) materials hold potential applications in low-power and high-speed spintronic devices due to their degrees of freedom such as valley and spin. In this Letter, we propose a mechanism that uses stacking engineering to control valley polarization (VP), ferroelectricity, layer polarization (LP), and magnetism in vdWs bilayers. Through first-principles calculations, we predict that the T-VSI monolayer is a magnetic semiconductor with a sizable VP.

View Article and Find Full Text PDF

Objectives: Lymph node metastasis (LNM) is an important factor affecting the stage and prognosis of patients with lung adenocarcinoma. The purpose of this study is to explore the predictive value of the stacking ensemble learning model based on F-FDG PET/CT radiomic features and clinical risk factors for LNM in lung adenocarcinoma, and elucidate the biological basis of predictive features through pathological analysis.

Methods: Ninety patients diagnosed with lung adenocarcinoma who underwent PET/CT were retrospectively analyzed and randomly divided into the training and testing sets in a 7:3 ratio.

View Article and Find Full Text PDF

Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.

Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.

View Article and Find Full Text PDF