Ginsenosides as Potential Natural Ligands of SLC3A2: Computational Insights in Cancer.

Life (Basel)

Division of General Education, Seokyeong University, Seoul 02173, Republic of Korea.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

has been used as a traditional Oriental medicinal herb. This research investigates the potential of ginsenosides, bioactive phyto compounds derived from , as ligands of the solute carrier (SLC) family, including SLC3A2, SLC7A6, SLC7A11, SLC7A5, SLC7A8, SLC43A1, LCN2, SLC7A9, SLC7A7, and SLC7A10 proteins-which are overexpressed in various cancers and linked to metastasis. Using molecular docking (MD), ginsenosides (Km, Ro, compound K (CK), Rk1, and Ra1) with high binding affinities to SLC3A2 were identified, exhibiting binding energies of -9.3, -9.1, -8.7, -8.0, and -7.7 kcal/mol, respectively. Further molecular dynamics simulations (MDSs) conducted using GROMACS revealed improved stability, flexibility, and dynamic behavior of the selected ginsenosides, predicting their potential as natural ligands to bind with SLC3A2. Though this computational prediction underscores these ginsenosides as promising candidates as natural ligands to bind and interact with SLC family proteins during anti-cancer therapies, further in vitro and in vivo studies are needed to validate these interactions and anti-cancer effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194096PMC
http://dx.doi.org/10.3390/life15060907DOI Listing

Publication Analysis

Top Keywords

natural ligands
12
potential natural
8
slc3a2 computational
8
slc family
8
ligands bind
8
ginsenosides
5
ginsenosides potential
4
ligands
4
slc3a2
4
ligands slc3a2
4

Similar Publications

In this work, an approach enabling the synthesis of η-alkene lithium complexes (Carb)Li(η-L) (L = 1-octene, cyclohexene) is elaborated. For 1,5-hexadiene, the same approach results in a binuclear μ-η:η-diene complex. The QTAIM parameters reveal the electrostatic nature of the Li-alkene interaction.

View Article and Find Full Text PDF

In recent years, photosensitizer-based phototherapy has gained increasing attention in antibacterial applications due to its low cost, noninvasive nature, and low drug resistance. Among various materials, porphyrin-based metal-organic frameworks (MOFs) have demonstrated great potential, due to their good biocompatibility, facile designability, and excellent light absorption capabilities that enable highly efficient antibacterial efficacy. However, further optimization of their antibacterial performance remains a key challenge.

View Article and Find Full Text PDF

Unlocking High-Performance Electrochemiluminescence in Supramolecular Coordination Frameworks via π-Bridge Engineering and Aggregation.

Small

September 2025

School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.

View Article and Find Full Text PDF

Synthesis and Reactivity of a Crystalline Zinc-cAAC Radical.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Organic Synthesis of Jiangsu Province & State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China.

Reaction of LZnI [L = BuC(N-DIPP), DIPP = 2,6-Pr-CH] with KC in the presence of cyclic (alkyl)(amino)carbene (cAAC) affords a stable radical complex [LZn(cAAC)] (3). Single-crystal structural analysis of 3 shows a short Zn─C bond and concomitant elongation of C─N bond within the cAAC ligand, indicating a significant π-backbonding from the metal to the cAAC ligand. EPR spectroscopy and DFT calculations reveal that the spin density is mainly localized on the carbenic carbon atom, with a small portion on the zinc center.

View Article and Find Full Text PDF

LMCT-Driven Iron Photocatalysis: Mechanistic Insights and Synthetic Applications.

Chemistry

September 2025

Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.

Iron-based photocatalysis has emerged as a sustainable and versatile platform for facilitating a wide range of chemical transformations, offering an appealing alternative to precious metal photocatalysts. Among the various activation modes, ligand-to-metal charge transfer (LMCT)-driven homolysis of Fe(III)-L(ligand) bonds has garnered considerable attention due to its ability to generate reactive radical species under mild conditions, without requiring the matching of substrates' redox potentials. In this review, we present a comprehensive overview of recent developments in LMCT-driven iron photocatalysis, with a particular focus on both mechanistic insights and synthetic applications published in the last five years.

View Article and Find Full Text PDF