Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rabies virus (RABV), belonging to the rhabdovirus, is a typical large virus that enters cells via clathrin-mediated endocytosis (CME). RABV-containing pits are only partially clathrin-coated and require local actin polymerization for efficient internalization. This unconventional entry process suggests that a specific receptor may be required to initiate actin polymerization during RABV entry. Here, we found that RABV uses the cell membrane protein neuropilin 2 (NRP2) to initiate F-actin polymerization. NRP2 is required for RABV infection and directly interacts with RABV glycoprotein. An antibody against the ectodomain of NRP2 and the soluble ectodomain of NRP2 blocked RABV infection in cells. Expression of human NRP2 in non-susceptible DU145 cells enabled RABV infection. We further found that NRP2 interacted with transforming growth factor-β receptor I (TGFBR1), triggering TGFBR1/2-Cdc42-mediated F-actin polymerization. Vesicular stomatitis virus, another prototypical rhabdovirus, also uses a similar mechanism to enter cells. Our findings demonstrate that NRP2 is a novel receptor for RABV entry by transducing the signal of viral binding across the plasma membrane to initiate actin polymerization. NRP2 may represent one of the long-sought molecules that facilitate large pathogen cell entry via CME.IMPORTANCERabies virus (RABV) enters cells via clathrin-mediated endocytosis (CME), but RABV-containing pits are only partially clathrin-coated, requiring actin polymerization for efficient entry. However, how the virus triggers the actin polymerization remains unclear. Here, we found that the cell membrane protein neuropilin 2 (NRP2) is required for RABV infection and directly interacts with RABV glycoprotein. An antibody against the ectodomain of NRP2 and the soluble ectodomain of NRP2 blocked RABV infection in cells. Expression of human NRP2 in non-susceptible DU145 cells enabled RABV infection. We further found that NRP2 interacted with transforming growth factor-β receptor I (TGFBR1), triggering TGFBR1/2-Cdc42-mediated F-actin polymerization. Vesicular stomatitis virus, another prototypical rhabdovirus, also uses a similar mechanism to enter cells. Our findings demonstrate that NRP2 is a novel receptor for RABV entry by initiating actin polymerization and may represent one of the long-sought molecules that facilitate large pathogen cell entry via CME.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282144PMC
http://dx.doi.org/10.1128/jvi.00638-25DOI Listing

Publication Analysis

Top Keywords

actin polymerization
28
rabv infection
24
ectodomain nrp2
16
rabv
14
nrp2
14
rabv entry
12
f-actin polymerization
12
polymerization
10
rabies virus
8
virus rabv
8

Similar Publications

Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.

View Article and Find Full Text PDF

Development and efficacy of dsRNA pesticides targeting the Colorado potato beetle with enhanced stability via chitosan formulations.

Pestic Biochem Physiol

November 2025

Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plant, Institute for Biosafety in Plant Biotechnology, 06484 Quedlinburg, Germany. Electronic address:

The Colorado potato beetle (CPB, Leptinotarsa decemlineata) is a major pest of solanaceous crops and has developed resistance to many conventional insecticides, highlighting the need for novel, environmentally sustainable control strategies. In this study, we evaluated the efficacy of RNA interference (RNAi) targeting the proteasome subunit β5 (PSMB5) gene as a biopesticide approach against CPB larvae. Double-stranded RNA (dsRNA) targeting PSMB5 (a highly specific dsRNA) and Actin (a less specific dsRNA) dsRNA was synthesized and applied via leaf dip assays, either in naked form or formulated with chitosan nanoparticles.

View Article and Find Full Text PDF

Integrin β3 dysregulation impairs megakaryopoiesis and microparticle production via disrupting ROCK-dependent cytoskeletal dynamics.

J Thromb Haemost

September 2025

Key Laboratory of Thrombosis and Hemostasis of National Health Commission, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Collaborative Innovation

Background: Megakaryocyte (MK) fragmentation into proplatelets (PPTs) and microparticles (MKMPs) is well established, yet the mechanisms underlying MKMP generation remain unclear.

Objectives: In order to investigate the role of integrin β3 and cytoskeletal dynamics during megakaryopoiesis and explore potential therapeutic targets for thrombocytopenia.

Methods: Proplatelet formation and MKMP release were evaluated both in vivo and in vitro under integrin β3 receptor impaired environment.

View Article and Find Full Text PDF

Compared to sun-exposed melanomas, acral melanomas are genetically diverse and occur in areas with low sun exposure and high mechanical loads. During metastatic growth, melanomas invade from the epidermis to the dermis layers through dense tumor stroma and are exposed to fibrillar collagen architectures and mechanical stresses. However, the role of these signals during acral melanoma pathogenesis is not well understood.

View Article and Find Full Text PDF

Long-range viscosity of the plasma membrane of a living cell measured by a shear-driven flow method.

Biophys J

September 2025

Department of Chromosome Science, National Institute of Genetics, Yata 1111, Mishima, 411-8540, Japan; Genetics Program, Sokendai, Yata 1111, Mishima, 411-8540, Japan.

The viscosity of the plasma membrane in living cells is a crucial biophysical parameter that regulates cellular functions. We categorize the plasma membrane viscosity into short-range and long-range viscosities based on the spatial scale of the cellular processes they influence. Short-range viscosity originates from the Brownian motion of membrane molecules, i.

View Article and Find Full Text PDF