Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thiolactomycin (), which features a unique γ-thiolactone ring, is a promising antibiotic candidate that specifically targets bacterial type II fatty acid synthase. Despite extensive studies on its pharmacological activities, modes of action, and chemical synthesis, the enzymatic processes responsible for forming the activity-determining γ-thiolactone ring have remained largely unknown. Here, we resolve this problem by revealing that the condensation and heterocyclization (Cy) domain of the nonribosomal peptide synthetase (NRPS) TlnC (TlnC), along with the cytochrome P450 enzyme TlnA, cooperatively enable the γ-thiolactone assembly. TlnC mediates an unusual sulfurtransfer reaction to sulfurate the polyketide intermediate, generating a thiocarboxylate intermediate. Subsequently, TlnA acts as a γ-thiolactone synthase, converting the linear thiocarboxylate intermediate into via a distal radical-based cyclization mechanism. These findings not only expand the functional and catalytic repertoires of NRPS Cy domains and P450 enzymes but also highlight a special enzymatic strategy for γ-thiolactone biosynthesis in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c14296DOI Listing

Publication Analysis

Top Keywords

γ-thiolactone ring
8
thiocarboxylate intermediate
8
γ-thiolactone
5
deciphering thiolactonization
4
thiolactonization mechanism
4
mechanism thiolactomycin
4
thiolactomycin biosynthesis
4
biosynthesis thiolactomycin
4
thiolactomycin features
4
features unique
4

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Synchrotron light sources are powerful platforms for cutting-edge, multidisciplinary research, with dozens currently in operation, construction or commissioning worldwide. It is widely recognized that different research areas have specific demands for source capabilities. For the majority of synchrotron facilities, delivering high-brightness, high-flux synchrotron radiation stably through high-current electron beams is the primary mode of operation.

View Article and Find Full Text PDF

In an attempt to react aminocyclopropenones with cyclic imines in order to synthesise amido-substituted pyrrolizidine natural products, we found that aminocyclopropenones undergo a previously unreported stereospecific and regiospecific catalyst-free, thermal ring-opening reaction with alcohols to yield β-enamino esters (also known as vinylogous carbamates or aminoacrylates). We report 21 examples in 45 to 97% isolated yield. The reaction occurs nucleophilic attack at the cyclopropenone carbonyl followed by regiospecific ring opening of the cyclopropenone with retention of alkene geometry.

View Article and Find Full Text PDF

A tetrahydroxydiboron-mediated radical cyclization of unactivated alkenes under photoinduced reaction conditions was developed to synthesize ring-fused quinazolinones for the first time. The concise, mild and photocatalyst- and oxidant-free conditions, as well as the good functional group tolerance, render this protocol a green and convenient strategy for synthesizing polycyclic ring-fused quinazolinones. Mechanistic studies indicated that the process might involve a radical pathway.

View Article and Find Full Text PDF

Thermal conductivity of selenium crystals based on machine learning potentials.

Phys Chem Chem Phys

September 2025

State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

Selenium, as an important semiconductor material, exhibits significant potential for understanding lattice dynamics and thermoelectric applications through its thermal transport properties. Conventional empirical potentials are often unable to accurately describe the phonon transport properties of selenium crystals, which limits in-depth understanding of their thermal conduction mechanisms. To address this issue, this study developed a high-precision machine learning potential (MLP), with training datasets generated molecular dynamics simulations.

View Article and Find Full Text PDF