98%
921
2 minutes
20
C2H2-type zinc finger proteins (ZFPs) are crucial transcription factors in eukaryotes, playing significant roles in various biological processe. The Q-type ZFP, a plant-specific subfamily, are particularly important in responding to abiotic stresses. Wheat is a crucial staple crop in world, with drought significantly affecting its yield and quality. Developing drought-resistant varieties is one of the most cost-effective strategies to mitigate drought stress in wheat. Here, we identified 772 non-redundant members of the Q-type ZFP genes family in Triticeae. Among them, 267 genes were found in common wheat, 56 in wild emmer wheat, 157 in spelt wheat, 154 in durum wheat, 56 in Triticum urart, and 82 in Aegilops tauschii. The phylogenetic tree shows that the Q-type ZFP genes family can be divided into five groups. The Q-type ZFPs family are mainly regulated by MYB, MYC, and WRKY transcription factors. Moreover, there are a large number of drought stress and ABA-related cis-acting elements in the promoter region. We studied their gene structures and found that most genes have a single exon. In this study, we identified 76 tandemly duplicated gene pairs across the six species. A total of 3,445 collinear gene pairs were found, with 1,877 pairs in wheat. Furthermore, most collinear gene pairs have Ka/Ks values less than 1. Comparative analysis of multiple physiological indices, including relative coleoptile length and CAT activity, revealed that common wheat cultivars JM6425 and JM4293 exhibited stronger drought tolerance compared to JM4258 and JM5787. TaZFP3D-12 and TaZFP5D-22 exhibited similar expression patterns in drought-tolerant varieties, contrasting with those in drought-sensitive ones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10709-025-00239-2 | DOI Listing |
Genetica
June 2025
Institute of Crop Germplasm Resources (Institute of Biotechnology) Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
C2H2-type zinc finger proteins (ZFPs) are crucial transcription factors in eukaryotes, playing significant roles in various biological processe. The Q-type ZFP, a plant-specific subfamily, are particularly important in responding to abiotic stresses. Wheat is a crucial staple crop in world, with drought significantly affecting its yield and quality.
View Article and Find Full Text PDFInt J Mol Sci
October 2023
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
Q-type C2H2 zinc finger proteins (ZFPs), the largest family of transcription factors, have been extensively studied in plant genomes. However, the genes encoding this transcription factor family have not been explored in grapevine genomes. Therefore, in this study, we conducted a genome-wide identification of genes in three species of grapevine, namely , , and , based on the sequence databases and phylogenetic and their conserved domains.
View Article and Find Full Text PDFBiology (Basel)
October 2023
Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
BMC Plant Biol
June 2023
State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
Background: C2H2 zinc finger proteins (C2H2-ZFPs), one of the largest transcription factors, play a variety of roles in plant development and growth as well as stress response. While, the evolutionary history and expression profile of the C2H2-ZFP genes in Larix kaempferi (LkZFPs) have not been reported so far.
Results: In this study, the whole genome of the LkZFPs was identified and characterized, including physicochemical properties, phylogenetic relationships, conservative motifs, the promoter cis-elements and Gene Ontology (GO) annotation.
Front Plant Sci
October 2022
College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
Dehydration tolerance is a vital factor for land plant evolution and world agricultural production. Numerous studies enlightened that the plant-specific C2H2-type zinc-finger proteins (C2H2-ZFPs) as master regulators played pivotal roles in the abiotic stress responses of plants. However, a comprehensive understanding of the evolution of C2H2-ZFPs in terrestrial plants and its regulatory mechanism in dehydration and rehydration response remains a mystery.
View Article and Find Full Text PDF