98%
921
2 minutes
20
Visualizing the in vivo dynamic transport behavior of substances following acupoint injection has remained a significant challenge due to the limitations of conventional imaging techniques. Near-infrared (NIR) imaging, with its superior tissue penetration, reduced autofluorescence, and real-time tracking capability, presents a promising approach for acupoint-associated imaging; however, its application in this context is yet to be experimentally validated. Here, NIR imaging is utilized to uncover highly localized, longitudinal transport of nanoparticles on the body surface in an acupoint-injection mouse model. By employing three distinct NIR fluorophores-Cy5, Cy5-labeled tetrahedral DNA nanostructures (TDN-Cy5), and silver sulfide (AgS) nanocrystals-it is demonstrated that acupoint injection induces directional migration along tissue-specific pathways, with nanoparticles exhibiting significantly prolonged retention compared to small molecules like Cy5. Notably, nanoparticles display minimal systemic distribution, with organ accumulation reduced to ≈1/50th of that observed with intravenous injection. This study underscores the unique capability of NIR imaging to visualize acupoint-associated transport dynamics, establishing a robust methodological framework to explore meridian-based substance delivery and its translational biomedical potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202402012 | DOI Listing |
J Mater Chem B
September 2025
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
Adenosine triphosphate (ATP) is a critical biomolecule in cellular energy metabolism, with abnormal levels in the bloodstream linked to pathological conditions such as ischemia, cancer, and inflammatory disorders. Accurate and real-time detection of ATP is essential for early diagnosis and disease monitoring. However, conventional biochemical assays and other techniques suffer from limitations, including invasive sample collection, time-consuming procedures, and the inability to provide dynamic, monitoring.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, PR China. Electronic address: pushouzhi
Background: The hydrogen sulfide (HS) in spoilage of raw meat poses significant food safety risks to human health. Meanwhile, as a signaling molecule, HS is crucial for maintaining human physiological homeostasis. Thus, the establishment of an efficient method for HS detection is essential for safeguarding human health.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China. Electronic address:
Background: Lung ischemia-reperfusion injury (LIRI) is a pathological condition characterized by aggravated oxidative-inflammatory tissue damage that occurs upon blood flow restoration after ischemia. LIRI can lead to severe complications, including primary graft dysfunction in lung transplants and multi-organ failure. However, current treatments remain limited.
View Article and Find Full Text PDFEnviron Res
September 2025
Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.
Cellulose is the most abundant renewable biomass resource on Earth, with good biodegradability and biocompatibility. In this study, a novel cellulose-based near-infrared fluorescent probe MN@NIR for ClO detection was developed by amination modification of microcrystalline cellulose (MCC), followed by the introduction of naphthalimide fluorophores and dicyanoisophorone groups. The probe MN@NIR exhibits excellent fluorescence properties with dual-emission peaks at 543 nm and 690 nm, the latter falling within the near-infrared (NIR) window.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
Near-infrared (NIR) emitting materials underpin emerging medical diagnostics and therapeutic bionanotechnologies. Conjugated polymer nanoparticles offer unique advantages due to their remarkable absorption cross-sections, photostability, synthetic tunability, and biocompatibility. Despite the vast library of NIR-absorbing conjugated polymers, relatively few narrow bandgap structures have been explored for NIR imaging.
View Article and Find Full Text PDF