98%
921
2 minutes
20
Inorganic hydroxyapatite microcapsules are innovative drug delivery devices tailored for oral drug delivery. They were designed as novel excipients, the so-called template inverted particles (TIP), to assist in preparing the orally disintegrating tablets. This study characterized the drug loading capacity using 11 clinically relevant drugs covering all BCS classes, focusing on midazolam HCl, ivermectin, ibuprofen, and metronidazole benzoate. An exceptionally high drug loading capacity of 45 % (v/v) was observed for all studied drugs. Compaction of loaded TIP resulted in mechanically stable tablets with tensile strengths of up to 6 MPa and disintegrating in a few seconds upon contact with water. Accelerated dissolution of encapsulated drugs is explained by the microcapsules' high specific surface area and the inhibited crystallization due to spacial constraints for some tested drugs. Efficient drug loading into TIP's internal hollow cavity structure is facilitated by a self-loading mechanism, eliminating the need for complex, drug-specific loading strategies. A mathematical model is presented to describe the self-loading mechanism of TIP, which is responsible for exclusive drug deposition within the cavity of the particles. We demonstrate that TIP, being a versatile and cost-effective platform technology, has the potential to facilitate the formulation development process of patient-friendly medicines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2025.114785 | DOI Listing |
Adv Healthc Mater
September 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, College of Modern Chinese Medicine Industry, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by joint inflammation, damage, and disability. Activated fibroblast-like synoviocytes (FLSs), abundant in RA synovium, crucially facilitate disease progression. These activated FLSs drive RA pathogenesis by upregulating adhesion molecules, proinflammatory cytokines, chemokines, and major histocompatibility complex class II (MHC-II).
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China. Electronic address:
Tumor surgery often leads to tumor residue, tissue defects, and drug-resistant bacterial infections, resulting in high recurrence rates and chronic wounds. In this study, an injectable hydrogel was synthesized using glycidyl trimethyl ammonium chloride-chitosan (GCh) and formylbenzoic acid-modified chrysomycin A (CA)-loaded F127 micelles (F127FA-CA). The formation of the hydrogel is achieved through Schiff base conjugation, which occurs between the amino groups present in GCh and the aldehyde groups located on the micelle surfaces.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, PR China. Electronic address:
Balancing antibacterial efficacy, mechanical integrity, and biocompatibility remains a critical challenge in drug release systems for wound dressings. Many antimicrobial agents exhibit inherent cytotoxicity, compromising cell viability and tissue compatibility. To address this, an Absorbable Gelatine Sponge was synthetised based on high-viscosity hydroxypropyl methylcellulose (HPMC K100M) and loaded with silver citrate nanorods (AgCit), which confine silver nanoparticles to enable controlled ion release.
View Article and Find Full Text PDFBiomater Adv
September 2025
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
PEGylated dendrimers have emerged as highly adaptable nanocarriers for targeted cancer therapy, offering exceptional control over size, surface functionality, and drug loading. The covalent attachment of polyethylene glycol (PEG) chains to dendrimer surfaces improves biocompatibility, enhances circulation time, and minimizes immune clearance, facilitating passive tumor targeting through the enhanced permeability and retention (EPR) effect. These engineered nanosystems allow for precise encapsulation or conjugation of chemotherapeutic agents, nucleic acids, and imaging probes, with tunable release profiles.
View Article and Find Full Text PDFTissue Cell
September 2025
Department of Biology, College of Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia. Electronic address:
Chronic wounds, particularly in diabetic patients, are characterized by prolonged inflammation, impaired angiogenesis, and delayed tissue regeneration. To address these challenges, the author developed a bioactive scaffold by incorporating quercetin nanoparticles (Qn) into a chitosan/silk fibroin (ChS) matrix, aiming to accelerate and enhance the wound healing process. Quercetin nanoparticles were synthesized via a solvent displacement method and incorporated into a ChS scaffold using a blending and freeze-drying technique.
View Article and Find Full Text PDF