Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Developing a highly efficient array-based sensing platform for sulfur-containing metal salt (SCM) analysis is imperious due to its potential to harm the environment and human health. Herein, we fabricated a ternary channel colorimetric sensor array technique to monitor multiple SCMs simultaneously, depending on the Au nanoparticle-loaded CeO nanobelt (Au/CeO) heterostructure with excellent peroxidase-like (POD-like) activity. The results of XPS and DFT calculations revealed that Au NPs as an electron bank can promote the charge redistribution on the surface of CeO. This process increases the ratio of Ce/Ce, facilitates the release of OH* and the desorption of HO, and significantly enhances the POD-like activity. Subsequently, colorimetry- and sensor array-based Au/CeO was developed, in integrating diverse degrees of TMB oxidation, owing to their various catalysis behaviors, leading to distinct patterns as "fingerprints" for different SCMs. The gained distinct patterns were recognized and processed principal component analysis (PCA), enabling specific and sensitive identification and discrimination of different concentrations of SCMs with a detection limit of 5 μM. To advance the field determination of various SCM concentrations, we creatively constructed a portable smartphone device-based autonomous sensing platform with a linear range of 5-110 μM, which further indicates the potential utility of colorimetric sensor arrays. This work opens new avenues for efficient on-site SCM detection and discrimination by enhancing the POD-like activity of CeO through surface electron redistribution.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5nr01503kDOI Listing

Publication Analysis

Top Keywords

colorimetric sensor
12
pod-like activity
12
sensor array-based
8
electron bank
8
charge redistribution
8
detection discrimination
8
sulfur-containing metal
8
sensing platform
8
distinct patterns
8
nanozyme colorimetric
4

Similar Publications

The long-term visualization of intracellular Fe dynamics and lysosomal activity is crucial for investigating the physiological roles and functions of lysosomes during the growth of organisms. The lysosome-targeted fluorescent probe (RBH-EdC), derived from rhodamine-nucleoside conjugates, demonstrates a sophisticated dual-activation design: one is Fe⁺ response, triggering spirolactam ring-opening to form xanthine structures, resulting in ≥ 1000-fold fluorescence enhancement with visible colorimetric transition (colorless→pink). Another is pH sensitivity, demonstrating protonation-dependent fluorescence amplification at the dC at site N3 (pK= 2.

View Article and Find Full Text PDF

A nanozyme-mediated cascade reaction system for fluorometric and colorimetric dual-mode detection of sarcosine (SA) was developed. The nanozymes (Zn-Glu@Hemin) were synthesized via a rapid self-assembly within 10 min at room temperature. Importantly, the Zn-Glu@Hemin exhibited strong peroxidase (POD)-mimicking activity, catalyzing the generation of hydroxyl radical (·OH) and superoxide anion (O) from hydrogen peroxide (HO), enhancing the fluorescence reaction of o-phenylenediamine (OPD) and the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine (TMB).

View Article and Find Full Text PDF

As the most dangerous mycotoxin, aflatoxin B1 (AFB1) has caused some food safety issues to be concerned. In this study, a simultaneous detection and degradation method towards AFB1 was established. Covalent-organic frameworks (COFs) were firstly synthesized and directly in situ deposited on the stainless-steel mesh, which would trigger the free-radical polymerization of acrylamide to form a hydrogel coating.

View Article and Find Full Text PDF

Strain sensors have received considerable attention in personal healthcare due to their ability to monitor real-time human movement. However, the lack of chemical sensing capabilities in existing strain sensors limits their utility for continuous biometric monitoring. Although the development of dual wearable sensors capable of simultaneously monitoring human motion and biometric data presents significant challenges, the ability to fabricate these sensors with geometries tailored to individual users is highly desirable.

View Article and Find Full Text PDF

Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.

View Article and Find Full Text PDF