Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbial Fuel Cells (MFC) are an emerging biomass energy technology that harnesses the power of electroactive bacteria living on a bacterial biofilm to convert biomass energy within waste materials into usable electricity. A pivotal aspect of MFC research involves understanding the behavior and underlying mechanisms of electroactive bacteria during extracellular electron transfer to the anode, which plays a crucial role in energy conversion. In this paper, four MFCs were operated at external resistances of 500 and 1000 ohms, and the changes in the biofilm's electroactive bacterial composition due to altered external resistances were indicated by the voltage and power differences. After stable power generation, total DNA was extracted from the biofilm for sequencing, and metabolites were tested. The expression trends of genes and the differences in final metabolites from the whole period indicate that electron transfer gene families are associated with , , , and , while tyrosine and purine metabolism showed significant differences in effective metabolite accumulation among communities with varying energy output efficiency. Omics techniques revealed, to some extent, the coordination mechanisms and bacterial interactions within biofilms during microbial community succession.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150292PMC
http://dx.doi.org/10.1039/d5ra01080bDOI Listing

Publication Analysis

Top Keywords

microbial fuel
8
fuel cells
8
biomass energy
8
electroactive bacteria
8
electron transfer
8
external resistances
8
integrating metagenomics
4
metagenomics untargeted
4
untargeted metabolomics
4
metabolomics analyze
4

Similar Publications

The development of innovative bioprocessing technologies has resulted from the growing global need for sustainable forms of energy and environmentally friendly waste treatment. In this review, we focus on the combined electro-fermentation and microbial fuel cells, as they form a hybrid system that simultaneously addresses wastewater treatment, bioenergy production, and bioplastics. Even though microbial fuel cells produce electricity out of the organic waste by the use of electroactive microorganisms, electro-fermentation improves the microbial pathways through the external electrochemical management.

View Article and Find Full Text PDF

Iron oxide-mediated enhancement of extracellular electron transfer and symbiosis in consortium of electroactive bacteria and microalgae for wastewater treatment.

Water Res

August 2025

College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:

This study explores the role of α-Fe₂O₃ in improving extracellular electron transfer (EET) and symbiotic interactions between electroactive Shewanella oneidensis MR-1, its gene-deficient mutants (ΔmtrC, ΔomcA, and ΔcymA), and microalgae (Chlorella vulgaris). The iron oxide facilitates the efficient transfer of electrons generated by MR-1 to microalgal photosystem via the pathway of CymA-MtrC-OmcA to α-Fe₂O₃. This process enhances the removals of TOC, TN, and NH₄⁺-N in the MR-1 bacterial-algal consortium by 9.

View Article and Find Full Text PDF

Microbial-photoelectrochemical cell for the conversion of raw cellulose materials into electrical power and chemicals.

Biosens Bioelectron

August 2025

Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel; The Resnick Sustainable Center for Catalysis, Technion - Israel Institute of Technology, 3200003, Haifa, Israel; Nancy and Stephen Grand Technion Energy Program, Technion - Israel Instit

Exploiting biomass as a fuel source has attracted increasing attention over the last few decades. Combined biotic-abiotic systems can enhance conversion efficiency, but biotic reactions often require oxygen-free conditions, which are hindered by oxygen evolution at the photoanode. Herein, we develop a modular microbial-photoelectrochemical cell (MPEC) that facilitates the one-pot degradation and light-induced conversion of cellulosic material into electrical power and added-value compounds.

View Article and Find Full Text PDF

Single-chamber air-cathode microbial fuel cells (SA-MFCs) are an aeration-free, energy-positive technology for nitrogen removal, which is critical for environmental protection. However, existing studies on nitrogen removal mechanisms in SA-MFCs are conflicting, hindering further development. Focusing on removal mechanisms, this study comprehensively investigated three potential nitrogen removal pathways (ammonia volatilisation, electrochemical oxidation and biological conversion) using both conventional hand-made and 3D-printed air cathodes.

View Article and Find Full Text PDF

This article explores the association between salivary uric acid (UA) and periodontitis, systematically analyzing its dual roles and research progress. Studies indicate that UA acts as a primary antioxidant in saliva under physiological conditions (accounting for 70%), protecting periodontal tissues by scavenging reactive oxygen species. However, when gum disease becomes severe, UA can switch roles and fuel inflammation, worsening tissue damage.

View Article and Find Full Text PDF