98%
921
2 minutes
20
Improving the energy release and safety of composite solid propellants is a key focus in energetic materials research. Graphene, with its excellent thermal conductivity and lubrication properties, is a promising additive. In this study, Al@AP core-shell particles doped with graphene were prepared via an in-situ deposition method. The structure, thermal decomposition, combustion, and safety performance of the graphene-doped Al@AP samples were investigated. Results showed that AP effectively coated aluminium to form a typical core-shell structure, with graphene uniformly loaded into the framework. Graphene contents of 1.0 and 4.0 wt.% reduced AP's thermal decomposition temperature by 0.97 and 16.68 °C, respectively. Closed-bomb and laser ignition tests revealed that pressure rise rates and combustion intensity increased with graphene content up to 1.0 wt.% but declined beyond that. Peak pressure reached 114.65 kPa at 1.0 wt.% graphene, and the maximum pressure increase rate was 13.29 kPa ms at 2.0 wt.%. Additionally, graphene significantly improved safety by reducing sensitivity to impact and friction. The enhanced performance is attributed to graphene's large surface area and excellent thermal and electrical conductivity that promote AP decomposition and combustion, combined with its lubricating effect that enhances safety, though excessive graphene may hinder these benefits. This study provides balanced design criteria for graphene-doped Al@AP as solid propellants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157051 | PMC |
http://dx.doi.org/10.3390/nano15110853 | DOI Listing |
Biochem Biophys Res Commun
September 2025
Selcuk University, Faculty of Medicine, Department of Medical Biochemistry, Konya, Turkey. Electronic address:
This study investigates the cytotoxic and biochemical effects of PEGylated graphene oxide sol-gel (SJ-go) nanoparticles, curcumin, and quercetin on BEAS-2B human bronchial epithelial. In this work, a new graphene oxide nanocomposite (SJ-go) was produced using the sol-gel method through a one-step reaction. These hybrid sol-gel systems include graphite, triethyl orthosilicate (TEOS), and polyethylene glycol (PEG) having a molecular weight of 8000 g/mol.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Jiangsu Provincial Key Lab for The Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Aramid films are potential separator candidates for high-safety lithium-ion batteries (LIBs) due to their inherent flame retardancy and outstanding thermal stability. However, both weak liquid electrolyte wettability and poor mechanical properties of aramid separators for lithium-ion batteries result in low ionic conductivity and unsatisfactory electrochemical performance for LIBs. Herein, a novel asymmetric porous composite separator composed of a relatively dense nanocellulose (CNC) layer and a porous poly(m-phenylene isophthalamide) (PMIA) supporting layer has been fabricated by using a water-induced phase conversion process.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:
Downsizing Pt particles and incorporating water dissociation site represents a promising strategy for maximizing atomic utilization efficiency and enhancing catalytic performance in Pt-based hydrogen evolution reaction (HER) electrocatalysts. Here, we present a self-supported Pt/Y(OH) electrocatalyst through a synergistic combination of anion insertion-enhanced electrodeposition and chemical deposition at ambient temperature. The resultant architecture features sub-2 nm Pt nanoclusters (with an average diameter of 1.
View Article and Find Full Text PDFMikrochim Acta
September 2025
National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei Street, 060021, Bucharest, Romania.
Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China. Electronic address:
Cellulose-based triboelectric nanogenerators (TENGs) have garnered significant attention in wearable electronics due to their biodegradability and abundant availability. However, the near-electroneutrality of cellulose hinders its advancement and broader application in high-performance TENGs. In this study, the triboelectric polarity of cellulose nanofibers (CNF) is modified by grafting different functional groups, wherein the incorporation of polar sulfonic acid groups enhances the deep trap density on the surface of CNF by an order of magnitude, reduces charge dissipation rates, and increases surface potential by nearly 200 % compared to untreated CNF.
View Article and Find Full Text PDF