Mikrochim Acta
September 2025
Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).
View Article and Find Full Text PDFThis work investigates photoactive inorganic powders (SiO, IrSiO, and IrO/IrSiO) and their derivatives modified with metallated porphyrin, focusing on their ability to generate reactive oxygen species (ROS) under visible light exposure. The core material, SiO, exhibits a tubular morphology and a high density of optically active defects. Modifiers such as metallic and iridium oxide nanoparticles, along with porphyrin, are employed to enhance light absorption and the generation of singlet oxygen (O) for potential biomedical applications.
View Article and Find Full Text PDFThe green synthesis of metal nanoparticles has received substantial attention due to their applications in various domains. The aim of the study was to obtain silver nanoparticles (AgNPs) by green synthesis with filamentous fungi, such as , , and . Fungal species were grown on nutrient media and aqueous mycelium extracts were used to reduce Ag to Ag (0).
View Article and Find Full Text PDFNanotechnology can offer a series of new "green" and eco-friendly methods for developing different types of nanoparticles, among which the development of nanomaterials using plant extracts (phytosynthesis) represents one of the most promising areas of research. This present study details the use of lavender flowers ( Mill., well-known for their use in homeopathic applications) for the biosynthesis of silver nanoparticles with enhanced antioxidant and antibacterial properties.
View Article and Find Full Text PDFPolymers (Basel)
December 2023
Green algae are a sustainable source of biopolymers for the global demand due to their high photosynthetic efficiency. This article describes the extraction of cellulose from plant systems represented by species. In order to extract various substances, algae were finely ground with the help of solvents (liquid media).
View Article and Find Full Text PDFCleaning represents an important and challenging operation in the conservation of cultural heritage, and at present, a key issue consists in the development of more sustainable, "green" materials and methods to perform it. In the present work, a novel xylene-in-water microemulsion based on nonionic surfactants with low toxicity was obtained, designed as low-impact cleaning agent for metallic historic objects. Phase diagram of the mixtures containing polyoxyethylene-polyoxypropilene triblock copolymer Pluronic P84 and D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) as surfactants, water, ethanol and xylene was studied, and a microemulsion with low surfactant content was selected as suitable cleaning nanosystem.
View Article and Find Full Text PDFNanostructured oxides (SiO, TiO) were synthesized using the sol-gel method and modified with noble metal nanoparticles (Pt, Au) and ruthenium dye to enhance light harvesting and promote the photogeneration of reactive oxygen species, namely singlet oxygen (O) and hydroxyl radical (•OH). The resulting nanostructures were embedded in a transparent polyvinyl alcohol (PVA) hydrogel. Morphological and structural characterization of the bare and modified oxides was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-Vis spectroscopy, and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFThis paper describes the preparation of new PEG-silica-MWCNTs composites as shape-stabilized phase change materials (ssPCMs) for application in latent heat storage. An innovative method was employed to obtain the new organic-inorganic hybrid materials, in which both a part of the PEG chains, used as the phase change material, and a part of the hydroxyl functionalized multiwall carbon nanotubes (MWCNTs-OH), used as thermo-conductive fillers, were covalently connected by newly formed urethane bonds to the in-situ-generated silica matrix. The study's main aim was to investigate the optimal amount of PEG that can be added to the fixed sol-gel reaction mixture so that no leakage of PEG occurs after repeated heating-cooling cycles.
View Article and Find Full Text PDFThe skin is a complex and selective system from the perspective of permeability to substances from the external environment. Microemulsion systems have demonstrated a high performance in encapsulating, protecting and transporting active substances through the skin. Due to the low viscosity of microemulsion systems and the importance of a texture that is easy to apply in the cosmetic and pharmaceutical fields, gel microemulsions are increasingly gaining more interest.
View Article and Find Full Text PDFNatural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes.
View Article and Find Full Text PDFMaterials (Basel)
April 2023
The continuous degradation of cultural heritage artifacts (due to different factors, including the rising air pollution, climate change or excessive biological activity, among others) requires the continuous development of protection strategies, technologies and materials. In this regard, polyelectrolytes have offered effective ways to fight against degradation but also to conserve the cultural heritage objects. In this review, we highlight the key developments in the creation and use of polyelectrolytes for the preservation, consolidation and cleaning of the cultural heritage artifacts (with particular focus on stone, metal and artifacts of organic nature, such as paper, leather, wood or textile).
View Article and Find Full Text PDFSalecan, a kind of polysaccharide, is produced by the Agrobacterium ZX09 salt tolerant strain. In this study, green crosslinked citric acid-salecan hydrogels are explored as novel materials with a high potential for use in regenerative medicine. The impact of salecan and citric acid on the final crosslinked hydrogels was intensively studied and estimated in terms of the whole physicochemical properties and antimicrobial activity.
View Article and Find Full Text PDFIn recent decades, there has been an increased interest in azo compounds with special optical and biological properties. In this work, we report the preparation of novel azo-compounds with two and three -N=N- double bonds, using the classical method of synthesis, diazotization and coupling. The compounds were characterized by H-NMR, C-NMR, FTIR, UV-VIS and fluorescence spectra.
View Article and Find Full Text PDFPharmaceutics
October 2022
Apart from its well-known activity as an antimicrobial agent, Curcumin (CURC) has recently started to arouse interest as a photosensitizer in the photodynamic therapy of bacterial infections. The aim of the present study was to evidence the influence of the encapsulation of Curcumin into polymeric micelles on the efficiency of photoinduced microbial inhibition. The influence of the hydrophobicity of the selected Pluronics (P84, P123, and F127) on the encapsulation, stability, and antimicrobial efficiency of CURC-loaded micelles was investigated.
View Article and Find Full Text PDFCurcumin, due to its antioxidant, antibacterial, anti-inflammatory, and antitumoral activity, has attracted huge attention in applications in many fields such as pharmacy, medicine, nutrition, cosmetics, and biotechnology. The stability of curcumin-based products and preservation of antioxidant properties are still challenges in practical applications. Stability and antioxidant properties were studied for curcumin encapsulated in O/W microemulsion systems and three related gel microemulsions.
View Article and Find Full Text PDFInt J Mol Sci
December 2021
The fabrication of collagen-based biomaterials for skin regeneration offers various challenges for tissue engineers. The purpose of this study was to obtain a novel series of composite biomaterials based on collagen and several types of clays. In order to investigate the influence of clay type on drug release behavior, the obtained collagen-based composite materials were further loaded with gentamicin.
View Article and Find Full Text PDFThis study was focused on creating a new and effective immobilization method for Trametes versicolor laccase (Lc) by using chitosan (CS) microspheres activated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride. The activation of the support alternated with immobilization of the enzyme, in repetitive procedures, led to obtaining three different products. Also, the physicochemical properties of the new products were investigated and compared with those of free laccase.
View Article and Find Full Text PDFThe present review aims to summarize the research efforts undertaken in the last few years in the development and testing of hydrogel-clay nanocomposites proposed as carriers for controlled release of diverse drugs. Their advantages, disadvantages and different compositions of polymers/biopolymers with diverse types of clays, as well as their interactions are discussed. Illustrative examples of studies regarding hydrogel-clay nanocomposites are detailed in order to underline the progressive researches on hydrogel-clay-drug pharmaceutical formulations able to respond to a series of demands for the most diverse applications.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2017
Hybrid nanomaterials based on zinc oxide were synthesized via the sol-gel method, using different silane coupling agents: (3-glycidyloxypropyl)trimethoxysilane (GPTMS), phenyltriethoxysilane (PhTES), octyltriethoxysilane (OTES), and octadecyltriethoxysilane (ODTES). Morphological properties and the silane precursor type effect on the particle size were investigated using dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The bonding characteristics of modified ZnO materials were investigated using Fourier transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDF