Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thioredoxin (TRX)-related transmembrane proteins (TMX), a subgroup of the protein disulfide isomerase (PDI) family, comprise a class of transmembrane proteins with diverse biological functions. Among these, TMX2 (PDIA12) remains one of the least characterized members. Recent studies have identified missense mutations in TMX2 associated with aberrant brain development and cerebellar malformations, highlighting its potential importance in developmental processes. Notably, Tmx2 mutant embryos exhibit developmental arrest at the E3.5 stage, suggesting a critical role in preimplantation embryogenesis. However, the precise molecular and cellular functions of Tmx2 in mammalian embryonic development remain largely unexplored. In this study, we provide novel insights into the essential role of Tmx2 during preimplantation embryonic development in mice. We demonstrate that TMX2 is specifically expressed in mouse embryos, with its subcellular localization closely associated with mitochondria during the two-cell to eight-cell stages. Knockdown of Tmx2 recapitulates the phenotypic defects observed in genetic mutants, revealing a pronounced impairment in blastomere proliferation, as confirmed by EdU incorporation assays. Furthermore, TUNEL assays indicate a significant increase in apoptotic signaling in Tmx2-deficient embryos, accompanied by elevated mRNA levels of the cell cycle inhibitors p21 and p53. Mechanistically, we show that Tmx2 knockdown disrupts mitochondrial function, leading to oxidative stress and impaired mitophagy and autophagy in developing embryos. These findings suggest that Tmx2 plays a pivotal role in maintaining mitochondrial integrity and cellular homeostasis during preimplantation embryogenesis. In summary, our study elucidates the critical role of Tmx2 in preimplantation embryonic development in mice, primarily through its regulation of mitochondrial function. These results advance our understanding of the molecular mechanisms governing preimplantation embryonic development and establish Tmx2 as a key regulator of mitochondrial dynamics and cellular survival during this critical developmental window.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153034PMC
http://dx.doi.org/10.1096/fj.202500640RDOI Listing

Publication Analysis

Top Keywords

embryonic development
16
tmx2
12
mitochondrial function
12
preimplantation embryogenesis
12
preimplantation embryonic
12
transmembrane proteins
8
functions tmx2
8
critical role
8
role tmx2
8
tmx2 preimplantation
8

Similar Publications

In an era of expanding reproductive possibilities, the human embryo has come to represent both immense potential and profound constraint. Advances in medically assisted reproduction (MAR) have led to the cryopreservation of hundreds of thousands of embryos each year, yet many remain unused and are ultimately discarded. Meanwhile, studies aimed at understanding infertility, early human development and preventing miscarriage continue to face significant barriers, with only a small fraction of embryos ever donated to research.

View Article and Find Full Text PDF

Migrasomes in Health and Disease: Insights into Mechanisms, Pathogenesis, and Therapeutic Opportunities.

Cell Physiol Biochem

September 2025

Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland, E-Mail:

Migrasomes are newly discovered, migration-dependent organelles that mediate the release of cellular contents into the extracellular environment through a process known as migracytosis. Since their identification in 2014, growing evidence has highlighted their critical roles in intercellular communication, organ development, mitochondrial quality control, and disease pathogenesis. Migrasome biogenesis is a complex, multi-step process tightly regulated by lipid composition, tetraspanin-enriched microdomains, and molecular pathways involving sphingomyelin synthase 2, Rab35, and integrins.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

Kommerell's diverticulum (KD) combined with a right-sided aortic arch (RAA) and an aberrant left subclavian artery (ALSA) is a rare congenital vascular anomaly causing significant compressive dysphagia. Treatment options, including open surgery, thoracic endovascular aortic repair and hybrid approaches, are debated due to anatomical complexities. We report a 48-year-old female with dysphagia from symptomatic KD, RAA and ALSA, clearly delineated by preoperative computed tomography angiography.

View Article and Find Full Text PDF

Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.

View Article and Find Full Text PDF