98%
921
2 minutes
20
The precise registration of solid-state quantum emitters to photonic structures is a major technological challenge for fundamental research (e.g. in cavity quantum electrodynamics) and applications to quantum technology. Standard approaches include the complex multistep fabrication of photonic structures on pre-existing emitters, both registered within a grid of lithographically-defined markers. Here, we demonstrate a marker-free, femtosecond laser writing technique to generate individual quantum emitters within photonic structures. Characterization of 28 defect centers, laser-written at the centers of pre-existing solid immersion lens structures, showed offsets relative to the photonic structure's center of 260 nm in the -direction and 60 nm in the -direction, with standard deviations of ± 170 and ± 90 nm, respectively, resulting in an average 4.5 times enhancement of the optical collection efficiency. This method is scalable for developing integrated quantum devices using spin-photon interfaces in silicon carbide and is easily extendable to other materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314893 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.5c01325 | DOI Listing |
Nanoscale Horiz
September 2025
Theoretical Chemical Physics Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, Mons B-7000, Belgium.
Two-photon spontaneous emission (TPSE) is a second-order quantum process with promising applications in quantum optics that remains largely unexplored in molecular systems, which are usually very inefficient emitters. In this work, we model the first molecular two-photon emitters and establish the design rules, highlighting their differences from those governing two-photon absorbers. Using both time-dependent density functional theory and Pariser-Parr-Pople calculations, we calculate TPSE in three π-conjugated molecules and identify a dominant pathway.
View Article and Find Full Text PDFOrg Lett
September 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
Helicenes are circularly polarized luminescence (CPL)-active but suffer from a fundamental tradeoff between fluorescence quantum yield (Φ) and luminescence dissymmetry factor (||). Herein, we present a strategy combining lateral π-extension and helical elongation in carbazole-embedded helicenes to address this challenge. Specifically, π-extended diaza[7]helicene () and diaza[9]helicene () were synthesized and characterized, revealing nearly a 2-fold increase in Φ and a 6-fold enhancement in || from to .
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Chemistry & Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
Halide perovskite quantum dots (QDs) have demonstrated outstanding performance in light-emitting applications. However, the performance of blue perovskite QDs lags far behind that of their red and green counterparts, especially those with color coordinates approaching (0.131, 0.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Advanced Materials for Intelligent Sensing and Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, China.
Incorporating boron atoms into organic macrocycles imparts unique chemical, electronic, and optical properties. The concept of making use of dative boron-nitrogen (B ← N) bonds for the construction of macrocycles has been proposed, but very few examples have been prepared with functional structures, much less pillar-like and other prismatic macrocycles, and their various functionalities have not been fully exploited. Here, we introduce a "functional molecular wall" synthetic protocol based on the self-assembly characteristics of B ← N dative bonds to construct highly symmetrical macrocycles, forming a quasi-pentagonal-shaped macrocycle (named [5]pyBN-) with a pillar-like structure.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
Owing to their unique combination of magnetic and optical properties, luminescent polychlorinated radicals are promising candidates for advanced applications in both optoelectronics and quantum technologies. In this study, we employ the lineshape formalism within a computational protocol based on time-dependent density functional theory (TD-DFT) to investigate the excited-state properties of six representative members of this family presenting different sizes and excited-state characters. We explore a wide range of density functionals, applying or not the Tamm-Dancoff approximation (TDA), combined with different vibronic models, namely, the vertical gradient (VG), vertical Hessian (VH), and adiabatic Hessian (AH), as well as dipole moment expansions using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations.
View Article and Find Full Text PDF