The precise registration of solid-state quantum emitters to photonic structures is a major technological challenge for fundamental research (e.g. in cavity quantum electrodynamics) and applications to quantum technology.
View Article and Find Full Text PDFSpin-photon interfaces based on group-IV colour centres in diamond offer a promising platform for quantum networks. A key challenge in the field is realising precise single-defect positioning and activation, which is crucial for scalable device fabrication. Here we address this problem by demonstrating a two-step fabrication method for tin vacancy (SnV) centres that uses site-controlled ion implantation followed by local femtosecond laser annealing with in-situ spectral monitoring.
View Article and Find Full Text PDFEffective light extraction from optically active solid-state spin centers inside high-index semiconductor host crystals is an important factor in integrating these pseudo-atomic centers in wider quantum systems. Here, we report increased fluorescent light collection efficiency from laser-written nitrogen-vacancy (NV) centers in bulk diamond facilitated by micro-transfer printed GaN solid immersion lenses. Both laser-writing of NV centers and transfer printing of micro-lens structures are compatible with high spatial resolution, enabling deterministic fabrication routes toward future scalable systems development.
View Article and Find Full Text PDFWe demonstrate an arbitrary distance measurement method by chirped pulse spectrally interferometry (CPSI) using femtosecond optical frequency comb (OFC). In this paper, the chirped fiber Bragg grating (CFBG) is used to investigate the mapping relationship between displacement and the center frequency of the chirped spectral interferogram. We overcome the direction ambiguity of dispersive interferometry (DPI) ranging and expand the range of distance measurement to 18 cm.
View Article and Find Full Text PDFSince the dispersive interferometry (DPI) based on optical frequency combs (OFCs) was proposed, it has been widely used in absolute distance measurements with long-distance and high precision. However, it has a serious problem for the traditional DPI based on the mode-locked OFC. The error of measurements caused by using the fast Fourier transform (FFT) algorithm to process signals cannot be overcome, which is due to the non-uniform sampling intervals in the frequency domain of spectrometers.
View Article and Find Full Text PDFThe basic principle of frequency-modulated continuous-wave lidars is to measure the velocity of a moving object through the Doppler frequency shift phenomenon. However, the vibration generated by the moving object will cause the spectrum to broaden and the precision and repeatability of speed measurement to decrease. In this paper, we propose a speed measurement method based on HCN gas cell absorption peak splitting the sweep signal of a large bandwidth triangular wave modulated frequency laser.
View Article and Find Full Text PDF