98%
921
2 minutes
20
Spin-photon interfaces based on group-IV colour centres in diamond offer a promising platform for quantum networks. A key challenge in the field is realising precise single-defect positioning and activation, which is crucial for scalable device fabrication. Here we address this problem by demonstrating a two-step fabrication method for tin vacancy (SnV) centres that uses site-controlled ion implantation followed by local femtosecond laser annealing with in-situ spectral monitoring. The ion implantation is performed with sub-50 nm resolution and a dosage that is controlled from hundreds of ions down to single ions per site, limited by Poissonian statistics. Using this approach, we successfully demonstrate site-selective creation and modification of single SnV centres. Our in-situ spectral monitoring opens a window onto materials tuning at the single defect level, and provides new insight into defect structures and dynamics during the annealing process. While demonstrated for SnV centres, this versatile approach can be readily generalised to other implanted colour centres in diamond and wide-bandgap materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12130254 | PMC |
http://dx.doi.org/10.1038/s41467-025-60373-5 | DOI Listing |
Int J Biometeorol
September 2025
Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
Plant viewing activities, which encompass the enjoyment of seasonal plant phenomena such as flowering and autumn leaf coloration, have become popular worldwide. Plant viewing activities are increasingly challenged by climate change, as key components like plant phenology and climate comfort are highly sensitive to global warming. However, few studies have explored the impact of climate change on viewing activities, particularly from an integrated, multi-factor perspective.
View Article and Find Full Text PDFIntensive Care Med
September 2025
Center for Humanizing the ICU, Beth Israel Deaconess Medical Center, Boston, USA.
Vestn Oftalmol
September 2025
National Medical Research Center for Endocrinology, Moscow, Russia.
Objective: This study presents a comparative analysis of outcomes of lateral orbital wall decompression performed using ultrasonic bone removal with standard and modified techniques.
Material And Methods: The study included 78 patients (109 orbits) with exophthalmos without visual impairment (subgroups 1A and 1B) and with optic neuropathy (ON) due to thyroid eye disease (TED) (subgroups 2A and 2B). Lateral wall decompression (LWD) was performed using ultrasonic bone removal with a modified (=58, patient subgroups 1A and 2A) or standard (=51, subgroups 1B and 2B) technique.
Vestn Oftalmol
September 2025
Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia.
Unlabelled: Retinoblastoma is a malignant retinal tumor characterized by an aggressive clinical course, with frequent recurrences and the emergence of new foci even during chemotherapy.
Objective: This study investigated the subpopulation composition of peripheral blood lymphocytes in children with newly diagnosed untreated retinoblastoma.
Material And Methods: A total of 24 children (48 eyes) were examined between December 20, 2023, and September 1, 2024; retinoblastoma was diagnosed in 28 eyes.
Lancet Reg Health West Pac
September 2025
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China.
Background: Cecolin9, a second-generation 9-valent HPV vaccine derived from the WHO-prequalified Cecolin, has received marketing authorisation in China in May 2025. The non-inferiority of type-specific immune responses between Cecolin9 and Gardasil9 has been previously established at month 7 in Chinese women aged 18-26 years (NCT04782895). This study aimed to compare the plateau antibody levels between the two vaccines three years post the first dose.
View Article and Find Full Text PDF