Prodrug-based combinational nanomedicine remodels lipid metabolism for reinforced ferroptosis and immune activation.

Acta Pharm Sin B

Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, Breast Center, Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, Core Facilities, West China Hospital, Sichuan University, Chengdu 610041, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ferroptosis is a form of programmed cell death characterized by overwhelmed lipid oxidation, and it has emerged as a promising strategy for cancer therapy. Enhanced ferroptosis could overcome the limitations of conventional therapeutic modalities, particularly in difficult-to-treat tumors. In this study, we developed a dual-modality therapy in nanomedicine by combining paclitaxel (PTX) chemotherapy and pyropheophorbide-a (Ppa) phototherapy. Heparin (HP) was grafted with poly(-(2'-hydroxy) propyl methacrylamide) (pHPMA) using reversible addition-fragmentation chain transfer polymerization to form HP-pHPMA (HH), which was utilized to deliver Ppa and PTX, yielding HP-pHPMA-Ppa (HH-Ppa) and HP-pHPMA-PTX (HH-PTX), respectively. The prodrug-based combinational nanomedicine (HH-PP) was formed by co-assembly of HH-PTX and HH-Ppa. It was found that HH-PP treatment significantly disrupted lipid metabolism in triple-negative breast cancer (TNBC) cells, induced extensive lipid oxidation, and promoted ferroptosis. , HH-PP intervention achieved a tumor growth inhibition rate of 86.63% and activated adaptive immunity with an elevated CD8 cytotoxic T cell infiltration level. This combinational nanomedicine offers a promising platform for co-delivery of multiple therapeutic agents. It exerts a promising anti-tumor effect enhanced ferroptosis and ferroptosis-induced immune activation by disrupting lipid metabolism in TNBC cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145006PMC
http://dx.doi.org/10.1016/j.apsb.2025.03.016DOI Listing

Publication Analysis

Top Keywords

combinational nanomedicine
12
lipid metabolism
12
prodrug-based combinational
8
immune activation
8
lipid oxidation
8
enhanced ferroptosis
8
lipid
5
ferroptosis
5
nanomedicine
4
nanomedicine remodels
4

Similar Publications

Background: Due to the complex structure and variable microenvironment in the progression of bladder cancer, the efficacy of traditional treatment methods such as surgery and chemotherapy is limited. Tumor residual, recurrence and metastasis are still difficult to treat. The integration of diagnosis and treatment based on nanoparticles can offer the potential for precise tumor localization and real-time therapeutic monitoring.

View Article and Find Full Text PDF

Gold/Prussian Blue-Based Nanocomposites with Dual Nanozyme Activities Exert a Synergistic Effect of Starvation Therapy and Sonodynamic Therapy in the Treatment of Liver Cancer.

Int J Nanomedicine

September 2025

School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.

Purpose: This study aimed to develop a composite nanozyme system (Au/PB-Ce6-HA) based on gold nanoparticles (AuNPs) and Prussian blue nanoparticles (PBNPs) to combat tumor hypoxia and insufficient endogenous hydrogen peroxide (HO) deficiency, thus enhancing the efficacy of sonodynamic therapy (SDT) and starvation therapy for liver cancer.

Methods: The Au/PB-Ce6-HA system was constructed by in situ embedding AuNPs on PBNPs, loading the sonosensitizer Chlorin e6 (Ce6), and surface-coating with thiolated hyaluronic acid (HA-SH). The system was evaluated both in vitro and in vivo to assess its ability to catalyze glucose to generate HO, decompose HO to produce oxygen, and generate highly toxic reactive oxygen species (ROS) under ultrasound irradiation.

View Article and Find Full Text PDF

The Wnt pathway is an evolutionarily conserved signaling cascade that regulates a wide range of fundamental cellular processes, including proliferation, differentiation, polarity, migration, metabolism, and survival. Due to its central regulatory roles, Wnt signaling is critically involved in the pathophysiology of numerous human diseases. Aberrant activation or insufficient inhibition of this pathway has been causally linked to cancer, degenerative disorders, metabolic syndromes, and developmental abnormalities.

View Article and Find Full Text PDF

Chemo-/sonodynamic/photothermal triune therapy in 2D and 3D models of MCF-7 cells using paclitaxel-loaded gold nanoparticles.

J Therm Biol

September 2025

Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:

Objective: Breast cancer remains the most prevalent cancer among females globally, with an alarming rise in incidence. Conventional treatments like chemotherapy face several limitations, necessitating innovative approaches. In this study, the efficacy of a novel chemo-/sonodynamic/photothermal triune therapy utilizing paclitaxel-loaded gold nanoparticles (PTX@GNPs) for MCF-7 breast cancer cells treatment was explored.

View Article and Find Full Text PDF

Nanomedicine Reimagined: Translational Strategies for Precision Tumor Theranostics.

Adv Mater

September 2025

Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.

Nanomedicine has shown remarkable promise in advancing tumor imaging and therapy through its ability to achieve targeted delivery, precision imaging, and therapeutic efficacy. However, translating these preclinical successes into clinical practice remains fraught with challenges, including inconsistent tumor targeting, off-target organ accumulation, and a lack of comprehensive understanding of in vivo behavior of nanomedicines. In this perspective, the current state of nanomedicine research is critically analyzed, emphasizing the translational bottlenecks and offering a forward-looking view on potential solutions.

View Article and Find Full Text PDF