98%
921
2 minutes
20
Background: Matrix metalloproteinase-2 (MMP-2) secretion homeostasis, governed by the multifaceted interplay of skin stretching, is a pivotal determinant influencing wound healing dynamics. This investigation endeavors to devise an artificial intelligence (AI) prediction framework delineating the modulation of MMP-2 expression under stretching conditions, thereby unravelling profound insights into the mechanobiological orchestration of MMP-2 secretion and fostering novel mechanotherapeutic strategies targeted at MMP-2 modulation.
Methods: Employing a bespoke mechanical tensile loading apparatus, diverse mechanical tensile stimuli were administered to fibroblasts, with parameters such as tensile shape and frequency duration constituting the mechanical loading regimen. Furthermore, reverse transcription polymerase chain reaction (RT‒PCR) assays were conducted to measure MMP-2 gene expression levels in fibroblasts subjected to mechanical stretching. Subsequently, the resulting data were partitioned into training and validation cohorts at a 7:3 ratio, facilitating the development of the deep learning (DL) model via a back propagation neural network predicated on the training set. An external validation set was also curated by culling pertinent literature from the PubMed database to assess the predictive ability of the model.
Results: Analysis of 336 data points related to MMP-2 gene expression via RT‒PCR corroborated the variability in MMP-2 gene expression levels in response to distinct mechanical stretching regimens. Consequently, a DL model was successfully crafted via the backpropagation algorithm to delineate the impact of mechanical stretching stimuli on MMP-2 gene expression levels. The model, characterized by an R value of 0.73, evinced a commendable fit with the training data set, elucidating the intricate interplay between the input features and the target variable. Notably, the model exhibited minimal prediction errors, as evidenced by a root mean square error (RMSE) of 0.42 and a mean absolute error (MAE) of 0.28. Furthermore, the model showcased robust generalization capabilities during validation, yielding R values of 0.70 and 0.71 for the validation and external validation sets, respectively, revealing its predictive accuracy.
Conclusions: The DL model fashioned through the backpropagation algorithm adeptly forecasts the impact of mechanical stretching stimuli on MMP-2 gene expression levels in fibroblasts with relative precision. These findings provide a foundation for the modulation of MMP homeostasis via mechanical stretching to expedite the healing of recalcitrant chronic refractory wound (CRW).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139300 | PMC |
http://dx.doi.org/10.1186/s12938-025-01399-0 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
State Key Laboratory of Chemical Resource Engineering, Beijing 100029, China.
Circularly polarized luminescence (CPL) has emerged as a critical technology for anticounterfeiting and optical display applications due to its unique chiroptical properties. We report a multicolor CPL-emitting elastomeric film (P37/PSK@SiO-PDMS) that synergistically combines chiral helical polyacetylene (P37) and a surface-engineered perovskite (PSK@SiO) through hydrogen-bond-directed assembly. Confinement within the PDMS matrix drives P37 to self-assemble into a chiral supramolecular structure through hydrogen bonding, inducing a chiroptical inversion.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
Strain sensors have received considerable attention in personal healthcare due to their ability to monitor real-time human movement. However, the lack of chemical sensing capabilities in existing strain sensors limits their utility for continuous biometric monitoring. Although the development of dual wearable sensors capable of simultaneously monitoring human motion and biometric data presents significant challenges, the ability to fabricate these sensors with geometries tailored to individual users is highly desirable.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P.R. China.
Mechanoresponsive molecular devices are capable of exhibiting dynamic responses to external mechanical stimuli, enabling applications in smart materials, nano-devices, and flexible electronics. However, energy conversion induced by mechanical stimuli requires efficient energy dissipation mechanisms. Traditional methods often involve bond breaking or incomplete energy release, which can lead to device failure during continuous operations.
View Article and Find Full Text PDFTrends Immunol
September 2025
Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. Electronic address:
Neutrophil extracellular trap (NET) formation, or NETosis, is a key innate immune response that contributes to cardiovascular diseases, including vascular inflammation, atherosclerosis, and thrombosis. In the cardiovascular system, neutrophils encounter mechanical cues such as shear stress, matrix stiffness, and cyclic stretch that influence their activation and NET release. This review examines emerging evidence linking altered mechanotransduction to dysregulated NETosis in vascular aging and cardiovascular pathology.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China; Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, People's Republic of China. Electronic address:
Background: Ultrasound-assisted transdermal drug delivery, or sonophoresis, enhances skin permeability, offering a non-invasive alternative for drug administration. However, its clinical application remains limited because of an insufficient understanding of its underlying mechanisms and optimal parameters. This study investigates the factors influencing ultrasound-enhanced drug absorption and examines its biological effects on skin structures and HaCaT cells, providing a comprehensive analysis of its mechanisms.
View Article and Find Full Text PDF