Publications by authors named "Manijeh Khanmohammadi"

Neutrophil extracellular trap (NET) formation, or NETosis, is a key innate immune response that contributes to cardiovascular diseases, including vascular inflammation, atherosclerosis, and thrombosis. In the cardiovascular system, neutrophils encounter mechanical cues such as shear stress, matrix stiffness, and cyclic stretch that influence their activation and NET release. This review examines emerging evidence linking altered mechanotransduction to dysregulated NETosis in vascular aging and cardiovascular pathology.

View Article and Find Full Text PDF

Calcific aortic valve disease (CAVD) is the most prevalent heart valve disorder worldwide. Despite its growing clinical burden, there are currently no pharmacological treatments available to prevent or reverse disease progression; transcatheter or surgical valve replacement remains the only therapeutic option. In this study, we developed a disease-inspired model to investigate how mechanical and biochemical cues, specifically reduced tensile stress and enrichment of hyaluronic acid (HA) within extracellular matrices (ECM), influence valvular endothelial cell biology, both hallmark features of CAVD.

View Article and Find Full Text PDF

Background: Neutrophils, the most abundant leukocytes circulating in blood, contribute to host defense and play a significant role in chronic inflammatory disorders. They can release their DNA in the form of extracellular traps (NETs), which serve as scaffolds for capturing bacteria and various blood cells. However, uncontrolled formation of NETs (NETosis) can lead to excessive activation of coagulation pathways and thrombosis.

View Article and Find Full Text PDF

Neutrophil infiltration and subsequent extracellular trap formation (NETosis) is a contributing factor in sterile inflammation. Furthermore, neutrophil extracellular traps (NETs) are prothrombotic, as they provide a scaffold for platelets and red blood cells to attach to. In circulation, neutrophils are constantly exposed to hemodynamic forces such as shear stress, which in turn regulates many of their biological functions such as crawling and NETosis.

View Article and Find Full Text PDF

Liver diseases are among the major causes of death worldwide. Alcohol consumption, obesity, diabetes mellitus, viral infection, and drug-induced liver injury are common risk factors for the development of liver diseases. Diosgenin is a herbal steroidal sapogenin with hepatoprotective properties.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) that meet the International Society for Cellular Therapy (ISCT) criteria are obtained from placental tissue by plastic adherence. Historically, no known single marker was available for isolating placental MSCs (pMSCs) from the decidua basalis. As the decidua basalis is derived from the regenerative endometrium, we hypothesised that SUSD2, an endometrial perivascular MSC marker, would purify maternal perivascular pMSC.

View Article and Find Full Text PDF

Background: In recent years, researchers discovered that menstrual blood-derived stem cells (MenSCs) have the potential to differentiate into a wide range of tissues including the chondrogenic lineage. In this study, we aimed to investigate the effect of MenSCs encapsulated in fibrin glue (FG) on healing of osteochondral defect in rabbit model.

Methods: We examined the effectiveness of MenSCs encapsulated in FG in comparison with FG alone in the repair of osteochondral defect (OCD) lesions of rabbit knees after 12 and 24 weeks.

View Article and Find Full Text PDF

Cartilage is an avascular, aneural, and alymphatic connective tissue with a limited capacity caused by low mitotic activity of its resident cells, chondrocytes. Natural repair of full thickness cartilage defects usually leads to the formation of fibrocartilage with lower function and mechanical force compared with the original hyaline cartilage and further deterioration can occur. Tissue engineering and regenerative medicine is a promising strategy to repair bone and articular cartilage defects and rehabilitate joint functions by focusing on the optimal combination of cells, material scaffolds, and signaling molecules.

View Article and Find Full Text PDF

Background: It has been reported that secreted frizzled-related protein-4 known as an antagonist of Wnt signaling pathway plays a role in luteinization process of rodent granulosa cells. The purpose of this study was twofold: 1) to determine whether recombinant human secreted frizzled-related protein-4 (rhSFRP-4) could directly induce terminal differentiation of rat Granulosa Cells (GCs) and 2) to understand how the modulation of β-catenin and Protein Kinase B (PKB)/AKT activity by exogenous SFRP-4 could be involved in steroidogenesis.

Methods: GCs were firstly stimulated with Follicle-Stimulating Hormone (FSH) named as FSH-primed cells then were treated with luteinizing hormone (LH).

View Article and Find Full Text PDF

Extended in vitro culture of human embryos beyond blastocyst stage could serve as a tool to explore the molecular and physiological mechanisms underlying embryo development and to identify factors regulating pregnancy outcomes. This study presents the first report on the maintenance of human embryo in vitro by alginate co-encapsulation of human blastocyst and decidualized endometrial stromal cells (EnSCs) under melatonin-fortified culture conditions. The effectiveness of the 3D culture system was studied through monitoring of embryo development in terms of survival time, viability, morphological changes, and production of the two hormones of 17b-oestradiol and human chorionic gonadotropin.

View Article and Find Full Text PDF

To find out differences and similarities in phenotypic, proliferative, and trans-differentiation properties of stem cells isolated from pulp of deciduous (SHEDs) and permanent (DPSCs) teeth with human bone marrow stem cells (BMSCs), we examined the expression of mesenchymal and embryonic stem cell markers in relation to the proliferation and osteogenic differentiation potentials of these cells. In this way, after isolating SHEDs, DPSCs, and BMSCs, cell proliferation was evaluated and population doubling time was calculated accordingly. Expression patterns of mesenchymal, hematopoietic, and embryonic stem cell markers were assessed followed by examining differentiation potential toward osseous tissue through alizarin red staining and qRT-PCR.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the use of a novel silk-based composite scaffold derived from Bombyx mori to repair osteochondral (OCD) defects in rabbit knees, highlighting its improved mechanical properties and porosity compared to traditional natural scaffolds.
  • Results show that scaffolds embedded with autologous chondrocytes have a significantly better repair capacity than scaffolds alone, with most defects regenerating into hyaline-like cartilage after 36 weeks.
  • The silk-based scaffolds demonstrated good biocompatibility and degradation rates, indicating their potential for future clinical applications despite no significant differences in outcomes compared to fibrin glue as a carrier for chondrocytes.
View Article and Find Full Text PDF

Nowadays, exceptional advantages of silk fibroin over synthetic and natural polymers have impelled the scientists to application of this biomaterial for tissue engineering purposes. Recently, we showed that embedding natural degummed silk fibers in regenerated Bombyx mori silk-based scaffold significantly increases the mechanical stiffness, while the porosity of the scaffolds remains the same. In the present study, we evaluated degradation rate, biocompatibility and regenerative properties of the regenerated 2% and 4% wt silk-based composite scaffolds with or without embedded natural degummed silk fibers within 90 days in both athymic nude and wild-type C57BL/6 mice through subcutaneous implantation.

View Article and Find Full Text PDF

During two decades ago, Iran has exhibited remarkable increase in scientific publication in different aspects including tissue engineering and regenerative medicine (TERM). The field of TERM in Iran dates comes back to the early part of the 1990 and the advent of stem cell researches. Nowadays, Iran is one of the privileged countries in stem cell therapy in the Middle East.

View Article and Find Full Text PDF

Menstrual blood has been introduced as an easily accessible and refreshing stem cell source with no ethical consideration. Although recent works have shown that menstrual blood stem cells (MenSCs) possess multi lineage differentiation capacity, their efficiency of hepatic differentiation in comparison to other stem cell resources has not been addressed so far. The aim of this study was to investigate hepatic differentiation capacity of MenSCs compared to bone marrow-derived stem cells (BMSCs) under protocols developed by different concentrations of hepatocyte growth factor (HGF) and oncostatin M (OSM) in combination with other components in serum supplemented or serum-free culture media.

View Article and Find Full Text PDF

Menstrual blood is easily accessible, renewable, and inexpensive source of stem cells that have been interested for cell therapy of neurodegenerative diseases. In this study, we showed conversion of menstrual blood stem cells (MenSCs) into clonogenic neurosphere- like cells (NSCs), which can be differentiated into glial-like cells. Moreover, differentiation potential of MenSCs into glial lineage was compared with bone marrow stem cells (BMSCs).

View Article and Find Full Text PDF

Cartilage tissue engineering is a promising technology to restore and repair cartilage lesions in the body. In recent years, significant advances have been made using stem cells as a cell source for clinical goals of cartilage tissue engineering. Menstrual blood-derived stem cells (MenSCs) is a novel population of stem cells that demonstrate the potential and differentiate into a wide range of tissues including the chondrogenic lineage.

View Article and Find Full Text PDF

In recent years, the advantages of menstrual blood-derived stem cells (MenSCs), such as minimal ethical considerations, easy access and high proliferative ability, have inspired scientists to investigate the potential of MenSCs in cell therapy of different diseases. In order to characterize the potency of these cells for future cell therapy of liver diseases, we examined the potential of MenSCs to differentiate into hepatocytes, using different protocols. First, the immunophenotyping properties and potential of MenSCs to differentiate into osteoblasts, adipocytes and chondrocytes were evaluated.

View Article and Find Full Text PDF

In recent decades, stem cell therapy has been introduced as a novel therapeutic approach for patients suffering from bone disorders. Recently, menstrual blood has been identified as an easily accessible and recycled stem cell source. However, the osteogenic differentiation capacity of menstrual blood-derived stem cells (MenSCs) compared with other adult stem cells remained unsolved.

View Article and Find Full Text PDF

Menstrual blood is easily accessible, renewable, and inexpensive source of stem cells. In this study, we investigated the chondrogenic differentiation potential of menstrual blood-derived stem cells (MenSCs) compared with that of bone marrow-derived stem cells (BMSCs) in two-dimensional culture. Following characterization of isolated cells, the potential for chondrogenic differentiation of MenSCs and BMSCs was evaluated by immunocytochemical and molecular experiments.

View Article and Find Full Text PDF

Introduction: The recent identification of menstrual blood-derived stem cells (MenSCs) as a unique population of stem cells has created enormous promise for tissue engineering. In this study, after characterization of MenSCs in comparison with bone marrow-derived stem cells (BMSCs), the potential of MenSCs seeded into electrospun, biodegradable, nanofibrous scaffolds in order to engineer cartilage was evaluated.

Methods: MenSCs and BMSCs were isolated by discontinuous density gradient centrifugation and plastic adherence.

View Article and Find Full Text PDF