Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Gastrointestinal hormones are essential for nutrient handling and regulation of glucose metabolism and may affect postprandial blood redistribution. In a randomized cross-over design in 10 healthy men, the involvement of glucose-dependent insulinotropic polypeptide (GIP) in splanchnic blood flow regulation was investigated using an infusion of GIP receptor antagonist (GIPR-An) GIP(3-30)NH2 during ingestion of oral glucose (75 g). In five separate sessions, we investigated GIP(1-42), GIPR-An with and without oral glucose, oral glucose alone, and a control saline infusion. Blood flow was assessed by phase contrast MRI, hepatic oxygen consumption by T2*, and plasma glucose, insulin, C-peptide, glucagon, GIP, GIPR-An, glucagon-like peptide 2, and bone metabolism markers by frequent blood sampling during all sessions. We found GIP(1-42) to stimulate blood flow in the superior mesenteric artery by ∼10% in the fasting state. Oral glucose alone increased mean blood flow in the superior mesenteric artery by ∼70% and portal vein by ∼40% of baseline. During oral glucose ingestion with concurrent infusion of GIPR-An, blood flow in the superior mesenteric artery was ∼22% lower. The hormone infusions did not affect blood flow in the hepatic artery and the celiac artery. Infusion of GIPR-An during oral glucose ingestion resulted in lower insulin secretion and higher levels of carboxy-terminal collagen crosslinks (bone resorption biomarker) compared with saline infusion, whereas glucagon levels were unaffected by both the injection of GIP and the GIPR-An infusions. We conclude that endogenous GIP increases splanchnic blood flow and contributes to postprandial intestinal hyperemia in healthy men.

Article Highlights: Administration of the gut hormone glucose-dependent insulinotropic polypeptide (GIP) increases splanchnic blood flow. We investigated the role of endogenous GIP in splanchnic blood flow regulation using a receptor antagonist in humans. Oral glucose ingestion increased blood flow in the superior mesenteric artery by ∼70%, and the increase was significantly lower during concurrent infusion of the GIP receptor antagonist. Thus, endogenous GIP contributed ∼22% of the postprandial increase in superior mesenteric artery blood flow. We have identified a novel physiological aspect of vascular biology related to the GIP receptor in humans. Treatments targeting the GIP receptors are likely to affect splanchnic blood flow.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db25-0149DOI Listing

Publication Analysis

Top Keywords

blood flow
48
oral glucose
28
splanchnic blood
24
superior mesenteric
20
mesenteric artery
20
flow superior
16
blood
15
glucose-dependent insulinotropic
12
insulinotropic polypeptide
12
flow
12

Similar Publications

Repopulating Microglia Suppress Peripheral Immune Cell Infiltration to Promote Poststroke Recovery.

CNS Neurosci Ther

September 2025

Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Aims: Sustained neuroinflammation following ischemic stroke impedes post-injury tissue repairment and neurological functional recovery. Developing innovative therapeutic strategies that simultaneously suppress detrimental inflammatory cascades and facilitate neurorestorative processes is critical for improving long-term rehabilitation outcomes.

Methods: We employed a microglia depletion-repopulation paradigm by administering PLX5622 for 7 days post-ischemia; followed by a 7-day withdrawal period to allow microglia repopulation.

View Article and Find Full Text PDF

Purpose: This study sought to determine the intrasession repeatability of the diffusion-weighted (DW) arterial spin labeling (ASL) sequence at different postlabel delays (PLDs).

Methods: We first performed numerical simulations to study the accuracy of the two-compartment water exchange rate (Kw) fitting model with added Gaussian noise for DW PLDs at 1500, 1800, and 2100 ms. Ten young, healthy participants then underwent a structural T scan and two intrasession in vivo DW ASL scans at each PLD on a 3T MRI.

View Article and Find Full Text PDF

Abnormal immune responses are common clinical features in septic patients. γδ T cells, as innate immune cells, play an important role in host defense, immune surveillance and homeostasis. However, the immune characteristics of γδ T cells in pediatric sepsis remains remain poorly understood.

View Article and Find Full Text PDF

Background: Space exploration has progressed significantly, with increased human presence in orbit, the development of space stations, and the planning of increasingly prolonged missions. However, the space environment poses substantial physiological challenges, particularly for the cardiovascular system. According to NASA's Human Research Program, the five primary risks associated with human spaceflight are: (1) microgravity, (2) ionizing cosmic radiation, (3) isolation and confinement, (4) closed environmental systems, and (5) the great distance from Earth.

View Article and Find Full Text PDF

Purpose: Tracer kinetic models are used in arterial spin labeling (ASL); however, deciding which model parameters to fix or fit is not always trivial. The identifiability of the resultant system of equations is useful to consider, since it will likely impact parameter uncertainty. Here, we analyze the identifiability of two-compartment models used in multi-echo (ME) blood-brain-barrier (BBB)-ASL and evaluate the reliability of the fitted water-transfer rate ).

View Article and Find Full Text PDF