Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The α-phase molybdenum trioxide (α-MoO), a biaxial hyperbolic van der Waals (vdW) crystal, supports highly confined and anisotropic phonon polaritons (PhPs), positioning it as a superior platform for mid-infrared light manipulation. The performance of PhP-based devices critically depends on the properties of α-MoO flakes, including their thickness, roughness, and pattern geometry. However, conventional patterning techniques, such as ion beam milling and plasma etching, often introduce doping artifacts and surface damage, resulting in high PhP losses. In this work, we develop a hot-water-based technique for the crystallographic engineering of α-MoO, leveraging its anisotropic etching properties for surface polishing and nanopatterning. This method exploits the notably higher etching rate along intralayer directions ([100], [001]) compared to the interlayer direction ([010]). Consequently, a 24% enhancement in PhP lifetime was observed in RIE-treated α-MoO flakes after hot water polishing, with no measurable change in material thickness. To further validate this technology, we fabricated various two-dimensional PhP manipulation devices using standard nanopatterning and thinning processes, followed by chemical-free hot water anisotropic crystallographic etching. This approach enabled the creation of nanoresonators, lenses, nanocavities, and unidirectional emitters with sharp edges precisely aligned along the crystallographic planes. Our crystallographic engineering approach unlocks precise control of surface waves at the nanoscale, facilitating the development of photonic devices for cutting-edge nanophotonic and nanoscale sensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5c07199DOI Listing

Publication Analysis

Top Keywords

crystallographic engineering
12
anisotropic crystallographic
8
engineering α-moo
8
α-moo flakes
8
hot water
8
α-moo
5
anisotropic
4
α-moo α-phase
4
α-phase molybdenum
4
molybdenum trioxide
4

Similar Publications

Precisely structured nanoclusters provide ideal platforms for elucidating structural evolution and structure-activity relationships. However, mechanistic understanding of dynamic core-shell rearrangements has long been impeded by the elusive nature of intermediates during transformation processes. Here, we show that ligand engineering-driven asymmetric thiolate exchange enables atomic-level visualization of structural evolution, thereby overcoming the long-standing challenge of intermediate capture.

View Article and Find Full Text PDF

Levetiracetam-Assisted Perovskite Crystallization and Tripartite Lead Iodide Reduction in Perovskite Solar Cells.

Adv Mater

September 2025

Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

Sequential deposition technique is widely used to fabricate perovskite films with large grain size in perovskite solar cells (PSCs). Residual lead halide (PbI) in the perovskite film tends to be decomposed into metallic lead (Pb) under long-term heating or light soaking. Here, a chiral levetiracetam (LEV) dopant containing α-amide and pyrrolidone groups is introduced into the PbI precursor solution.

View Article and Find Full Text PDF

Disordered rock-salt LiVO (DRX-LVO) anode exhibits distinctive 3D Li percolation transport networks, which offers the unique advantage for ultra-charging. However, the existing chemical lithiation preparation routes not only pose safety risks due to the use of highly reactive reagents but also inevitably result in products with poor crystallinity. Investigating the origin, impact, and strategies for crystallinity degradation is pivotal for advancing the industrialization of chemical lithiation.

View Article and Find Full Text PDF

Helical nanographenes (NGs) play a crucial role in the development of chiral nanomaterials due to their distinctive optoelectronic and chiroptical properties. Herein, we report the efficient synthesis of two unprecedented azulene-embedded asymmetric triple helical NGs ( and ) with controllable helicene subunit lengths and π-extension. The crystallographic analysis confirms their highly twisted and asymmetric geometries.

View Article and Find Full Text PDF

Anti-Bredt-Like Triterpenoids from Mycelial Cultures of the Edible Mushroom cf. .

Org Lett

September 2025

National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park Phahonyothin Road, Klong Luang, Pathumthani 12120, Thailand.

Sixteen undescribed triterpene glycosides, oudecanarins A-P (-), were isolated from cultures of basidiomycete cf. TBRC-BCC 85371. Oudecanarins A-G (-) contain a bicyclo[4.

View Article and Find Full Text PDF