98%
921
2 minutes
20
This study aimed to investigate the effects of five-session high-definition transcranial direct current stimulation (HD-tDCS) on resting-state brain network connectivity and efficiency under running-induced fatigue. This double-masked, randomized, and sham-controlled study involved 24 male adults randomly assigned to the HD-tDCS or sham-tDCS group. Participants completed a running-induced fatigue protocol at a personalized running speed before and after the intervention, and heart rate (HR) and Borg rating of perceived exertion (RPE) were monitored. Resting-state electroencephalography (EEG) signals from 28 channels were recorded before the intervention and after fatigue was induced. Brain network connectivity was characterized using average functional connectivity measured using the phase locking value, and network efficiency was assessed using graph theoretical indices. Compared with the sham-tDCS group, the HD-tDCS group showed significantly increased averaged functional connectivity ( ${p} =0.019$ ), clustering coefficient ( ${p} =0.036$ ), and local efficiency ( ${p} =0.020$ ) in the theta band, and the global efficiency ( ${p} =0.020$ ) in the gamma band relative to the baseline values. The $\Delta $ HR ( ${p} \lt 0.001$ ) and $\Delta $ RPE values ( ${p} =0.019$ ) significantly decreased in the HD-tDCS group relative to sham-tDCS group and baseline values. Multiple sessions of anodal HD-tDCS targeting the primary motor cortex can enhance resting-state brain network connectivity and efficiency in the theta and gamma bands under running-induced fatigue, and reduce the perceived effort during running.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2025.3574318 | DOI Listing |
Stroke
September 2025
Department of Neurology, Yale School of Medicine, New Haven, CT (L.H.S.).
Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.
View Article and Find Full Text PDFLab Chip
September 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.
View Article and Find Full Text PDFHum Brain Mapp
September 2025
Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Aim: A total of 30% of individuals with epilepsy are resistant to drug treatment. Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) shows promise for treating drug-resistant epilepsy (DRE), but further research is needed to optimize DBS parameters, including stimulation frequency. This study aimed to reveal the optimal frequency for ANT-DBS by testing the real-time effects of various stimulation frequencies on the ANT among patients undergoing stereoelectroencephalography (SEEG) electrode implantation.
View Article and Find Full Text PDFBrain Behav
September 2025
Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
Background And Purpose: White matter hyperintensity (WMH) impairs cognitive function but is not evident in the early stage, raising the need to explore the underlying mechanism. We aimed to investigate the potential role of network structure-function coupling (SC-FC coupling) in cognitive performance of WMH patients.
Methods: A total of 617 participants with WMH (mean age = 61 [SD = 8]; 287 females [46.