Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nitrogen is a key element in promoting crop growth and development and improving photosynthesis. This study aimed to study the response of two rice genotypes to the restoration of N supply after varying periods of N deficiency. We used the low-nitrogen-tolerant rice Jijing 88 (JJ 88) and the nitrogen-sensitive rice variety Xinong 999 (XN 999) as test materials. The results of this study indicated that, compared to XN 999, JJ 88 has a higher content of the photosynthetic pigments. Photosynthesis in JJ 88 has strong adaptability under low-nitrogen conditions. Upon an increase in the nitrogen supply level, the maximum regeneration rate of ribulose biphosphate (RuBP, ) and the maximum carboxylation rate of RuBP () in JJ 88 showed a relatively large increase. The chlorophyll fluorescence parameters, including the effective quantum yield of photosystem II (Φ), the efficiency of excitation capture by open PSII centers (Fv'/Fm'), photochemical fluorescence quenching (qP), and the electron transfer rate (ETR) decreased slightly, while the non-photochemical fluorescence quenching (NPQ) increased slightly. Under low-nitrogen conditions, low-nitrogen-tolerant rice varieties maintain reasonable growth during the seedling stage. With an increase in the nitrogen supply level, the dry matter accumulation, photosynthetic pigment content, photosynthesis, and electron transfer ability of plants improve, but not to normal nitrogen supply levels. However, compared with XN 999, JJ 88 has a more proactive recovery ability. The research results provide valuable guidance for the breeding of nitrogen-efficient rice varieties and nitrogen fertilizer management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114715PMC
http://dx.doi.org/10.3390/plants14101465DOI Listing

Publication Analysis

Top Keywords

nitrogen supply
12
chlorophyll fluorescence
8
low-nitrogen-tolerant rice
8
compared 999
8
low-nitrogen conditions
8
increase nitrogen
8
supply level
8
fluorescence quenching
8
electron transfer
8
rice varieties
8

Similar Publications

The bioconversion of purple non-sulfur photosynthetic bacteria (PNSB) based on real food waste (FW) fermentation broth is crucial for FW resource recovery. This study enhanced the bioconversion efficiency of FW fermentation broth by PNSB through light intensity and photoperiod optimization, while elucidating the synthesis mechanisms of high-value cell inclusions. The results demonstrated that 4500 lx-L/D = 16/8 significantly enhanced R.

View Article and Find Full Text PDF

The interaction between nitrogen source and light intensity affects the biomass and phenotypic plasticity of Scenedesmus obliquus.

Biotechnol Lett

September 2025

Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.

As critical environmental factors, nitrogen and light not only regulate phytoplankton growth but also influence their phenotypic plasticity. Scenedesmus obliquus, an alga which is famous for its remarkable phenotypic plasticity, was studied to understand its response to varying combinations of nitrogen source and light intensity. It was cultured in media containing different nitrogen sources (NaNO, NHCl, CO(NH)) under a range of light intensities (25, 50, 75, 100, 150 µmol photons m s).

View Article and Find Full Text PDF

In symbiotic plant-microbe interactions, the host invests considerable amounts of resources in the microbial partner. If the microbe does not reciprocate with a comparable symbiotic benefit, it is regarded as a cheater. The host responds to cheaters with negative feedback mechanisms (sanctions) to prevent fitness deficits resulting from being exploited.

View Article and Find Full Text PDF

Mechanistic Insights into Recovery of Partial Denitrification/Anammox under Continuous Flow: Balancing Nitrite Supply and Microbial Competition.

Environ Res

September 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.

Partial denitrification coupled with anammox (PD/A) has emerged as a promising low-carbon strategy for energy-efficient nitrogen removal from municipal wastewater. However, the reactivation of PD/A systems following operational disturbances remains challenging, particularly under continuous-flow conditions, where microbial interactions and process stability are more complex than in sequencing batch reactors. This study systematically and first evaluated the recovery dynamics of a continuous-flow PD/A process seeded with low-activity granular sludge stored at 4 °C for three months.

View Article and Find Full Text PDF

Fungal symbiont Mycena complements impaired nitrogen utilization in Gastrodia elata and supplies indole-3-acetic acid to facilitate its seed germination.

Plant Commun

September 2025

Guizhou University of Traditional Chinese Medicine Guiyang 550025 Guizhou, China; Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Guiyang 550025, Guizhou, China. Electronic address:

Nitrogen and auxin uptake plays pivotal roles in seed germination and development. Gastrodia elata, a fully mycoheterotrophic plant, depends entirely on its symbiotic association with Mycena for early growth and seed germination. The process by which Mycena enables the supply of nitrogen nutrients and auxin, which are deficient in G.

View Article and Find Full Text PDF