Publications by authors named "Yulu Lei"

As critical environmental factors, nitrogen and light not only regulate phytoplankton growth but also influence their phenotypic plasticity. Scenedesmus obliquus, an alga which is famous for its remarkable phenotypic plasticity, was studied to understand its response to varying combinations of nitrogen source and light intensity. It was cultured in media containing different nitrogen sources (NaNO, NHCl, CO(NH)) under a range of light intensities (25, 50, 75, 100, 150 µmol photons m s).

View Article and Find Full Text PDF

Purpose: To analyze the repair effect of glass fiber post combined with zirconia all ceramic crown in tooth defects and explore the relevant factors affecting the therapeutic effect.

Methods: A total of 100 patients(142 teeth) with dental defects admitted to Shandong Provincial Chronic Disease Hospital from January 2018 to January 2021 were selected as the study subjects. They were divided into an experimental group (glass fiber post combined with zirconia all ceramic crown restoration) with 70 patients(98 teeth) and the control group (metal post combined with zirconium dioxide all ceramic crown) with 30 patients (44 teeth).

View Article and Find Full Text PDF

Chiral light emission plays a key role in sensing, tomography, quantum communication, among others. Whereas, achieving highly pure, tunable chirality emission across a broad spectrum currently presents significant challenges. Free-electron radiation emerges as a promising solution to surpass these barriers, especially in hard-to-reach regimes.

View Article and Find Full Text PDF

Gradually warming of water bodies caused by climate change is expected to intensify the expansion of Microcystis blooms causing a series of severe problems in waters. However, most predictions about global warming further promoting the dominance of Microcystis are dependent on the strains only experiencing short-term acclimation to high temperature. It still remains unknown whether long-term warming acclimation improves the adaptive ability of Microcystis to high temperature.

View Article and Find Full Text PDF

The in situ identification of superbugs with the simultaneous killing of it is key to preventing human health. Here, a one-stop identification and killing platform for near-infrared (NIR) triggering was designed and constructed using lignosulfonate (LS), cationic guar gum (CG) and AgO NPs hydrogels (LS/CG/AgO). The hydrogel network is used as a fixed matrix for AgO NPs and a nano reactor, meanwhile 3,3', 5,5'-tetramethylbenzidine (TMB) as a single probe sensor array for bacterial identification.

View Article and Find Full Text PDF

Adhesive hydrogels have emerged as promising candidates to solve life-threatening infectious skin injuries. However, the inadequate mechanical characteristics and biological adherence limit the traditional wound dressing unable to adapt to high-frequency movement and real-time monitoring of wound healing, calling for the development of bioadhesive materials guided wound healing. In this work, a multifunctional bioadhesive hydrogel with double colorimetric-integrated of polyethylene glycol (PVA)-dextran (Dex)-borax-bromothymol blue (BTB)-fluorescein thiocyanate (FITC) and functionalization by tungsten disulfide-catechol nanozyme (CL/WS) was created.

View Article and Find Full Text PDF

Background: 'Gold Finger' is a grape cultivar with a finger-like shape and a milk flavor. The process by which its aroma profile evolves during ripening is unclear. Thus, changes in the free and bound volatile compounds present in 'Gold Finger' grapes during ripening were investigated using headspace sampling-solid-phase microextraction-gas chromatography-mass spectroscopy (HS-SPME-GC-MS).

View Article and Find Full Text PDF