Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The in situ identification of superbugs with the simultaneous killing of it is key to preventing human health. Here, a one-stop identification and killing platform for near-infrared (NIR) triggering was designed and constructed using lignosulfonate (LS), cationic guar gum (CG) and AgO NPs hydrogels (LS/CG/AgO). The hydrogel network is used as a fixed matrix for AgO NPs and a nano reactor, meanwhile 3,3', 5,5'-tetramethylbenzidine (TMB) as a single probe sensor array for bacterial identification. In contrast to conventional methods, hybrid hydrogels have catalytic qualities through which TMB be catalyzed to generate oxidized TMB (oxTMB). The drug resistance of the same strain can be distinguished based on the different inhibition abilities of drug-resistant superbacteria in TMB and hydrogel reactions. Then, the employing of oxTMB photothermal characteristics, it can be efficiently killed in real time while being driven by a near-infrared laser. The proposed one-stop hydrogel platform paves a way for the rapid identification and killing of drug-resistant superbacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123340DOI Listing

Publication Analysis

Top Keywords

guar gum
8
identification killing
8
ago nps
8
drug-resistant superbacteria
8
nir "trigger
4
"trigger switch"
4
switch" situ
4
situ distinguish
4
distinguish superbacteria
4
superbacteria photothermal
4

Similar Publications

To determine the fermentation capacity of gut microbiomes with diverse plant carbohydrate active enzyme (CAZyme) repertoires, we collected fecal samples from 18 healthy adults who reported consuming at least 5 different fruits and vegetables daily and conducted shotgun metagenome analysis. Five fecal samples with the most diverse CAZymes were then fermented with 7 different fibers selected for their unique monosaccharide profiles-banana, kale,13-bean soup, flax, coconut flour, MS Prebiotic (resistant starch) and Sunfiber (guar gum)-for 72 hours. Samples were collected at 4 timepoints for 16S sequencing, and pH, SCFAs, and monosaccharide measurements.

View Article and Find Full Text PDF

Polysaccharide copolymeric conjugates and their applications in targeted cancer therapy.

Int J Biol Macromol

September 2025

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India. Electronic address:

Polysaccharide copolymers Conjuates have surfaced as a versatile foundation in the development of advanced smart drug delivery systems, owing to their inherent biocompatibility, biodegradability, and capacity for chemical modification. This review brings into focus the recent advances in co-polymeric drug delivery systems based on naturally occurring polysaccharides like chitosan, alginate, dextran, hyaluronic acid, pullulan, guar gum, xanthan gum, agarose, gellan gum, and starch. Their structural malleability and functionalization capabilities are emphasized to engineer therapeutic payload stability, bioavailability, and controlled release.

View Article and Find Full Text PDF

A comprehensive review of up-to-date strategies and future trends toward the engineered guar gum for packaging applications.

Int J Biol Macromol

September 2025

Department of Paper and Packaging Technology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India. Electronic address:

Guar gum (GG), a natural galactomannan polysaccharide derived from Cyamopsis tetragonoloba, is gaining popularity as a biodegradable and environmentally friendly packaging material. With the growing demand for sustainable food packaging, stricter regulations prioritize cost efficiency, consumer safety, and environmental impact. It exhibits strong potential for use in packaging films and coatings, offering barrier properties that slow down fruit ripening and reduce post-harvest quality loss.

View Article and Find Full Text PDF

Active films displayed substantial prospects to maintain quality of tropical fruits during storage and transportation. This study developed multifunctional composite films loaded with melatonin/carvacrol nanoemulsions (MCNE) in guar gum/pullulan polysaccharide (GP) matrixes. The SEM analysis showed that MCNE was uniformly dispersed in GP film matrixes, and formed dense and continuous phase structure.

View Article and Find Full Text PDF