Chiral light emission plays a key role in sensing, tomography, quantum communication, among others. Whereas, achieving highly pure, tunable chirality emission across a broad spectrum currently presents significant challenges. Free-electron radiation emerges as a promising solution to surpass these barriers, especially in hard-to-reach regimes.
View Article and Find Full Text PDFNat Commun
April 2024
The dynamic control of electromagnetic waves is a persistent pursuit in modern industrial development. The state-of-the-art dynamic devices suffer from limitations such as narrow bandwidth, limited modulation range, and expensive features. To address these issues, we fuse origami techniques with metamaterial design to achieve ultra-wideband and large-depth reflection modulation.
View Article and Find Full Text PDFTwo-dimensional (2D) materials including graphene, transition metal dichalcogenides, black phosphorus, MXenes, and semimetals have attracted extensive and widespread interest over the past years for their many intriguing properties and phenomena, underlying physics, and great potential for applications. The vast library of 2D materials and their heterostructures provides a diverse range of electrical, photonic, mechanical, and chemical properties with boundless opportunities for photonics and plasmonic devices. The infrared (IR) regime, with wavelengths across 0.
View Article and Find Full Text PDFOpt Lett
September 2022
The vortex beam provides a promising alternative for next-generation wireless communication, but it is a long-standing challenge to generate a multi-mode and robust vortex beam. In this Letter, a multi-mode vortex beam emitter is introduced and experimentally verified based on spoof surface plasmon polaritons (SSPP). The SSPP on a helical grating carries multi-mode orbital angular momentum and can be converted into a high-purity vortex beam via the diffraction of a ring array.
View Article and Find Full Text PDFOpt Lett
September 2021
A broadband vortex beam generator provides a promising solution for various applications. Since the space-charge wave of the free-electron bunch inherently covers a wide frequency range, the free-electron-driven devices can be utilized to generate broadband radiation. This work presents a wideband tunable multi-mode vortex beam generator based on the Smith-Purcell radiation (SPR) from a helical grating.
View Article and Find Full Text PDFA beam-scanning terahertz (THz) radiation mechanism in a free-electron-driven grating system is proposed for THz applications. By loading a period-asynchronous rod array above the grating, the spoof surface plasmon (SSP) originally excited by the electron changes its radiation characteristics owing to the rod-induced Brillouin zone folding effect. The rod array functions as an antenna and converts the SSP into a spatial coherent THz radiation.
View Article and Find Full Text PDF