98%
921
2 minutes
20
Numerous studies have documented erucin's anticancer and vasodilatory properties, yet its impact on pathological cardiac hypertrophy remains to be fully understood. This study aimed to explore the therapeutic potential of erucin in cardiac hypertrophy induced by pressure overload. Cardiac hypertrophy was induced in mice by transverse aortic constriction (TAC) surgery, and in neonatal rat cardiomyocytes via phenylephrine (PE) treatment. Cardiac function and remodeling were evaluated using echocardiography, histological assessment, and molecular analyses. Mitochondrial function was assessed by measuring mitochondrial respiration, ATP concentration, the NAD+/NADH ratio, and reactive oxygen species (ROS) levels. Molecular docking was performed to identify erucin's downstream effector. Nrf2 and Sirt3 were silenced using siRNAs, and their activities were inhibited with ML385 and 3-TYP, respectively. Here, we found that erucin improved cardiac function and remodeling in TAC-induced hypertrophic mice, mitigated PE-induced cell hypertrophy, and restored mitochondrial function. Molecular docking analysis identified Nrf2 as a target protein of erucin. Erucin increased Nrf2 protein levels and activated the Nrf2 signaling pathway, which in turn promoted Sirt3 transcription. This effect was blocked by silencing Nrf2 or using ML385. Additionally, silencing Nrf2 and Sirt3 or using ML385 and 3-TYP abolished erucin's protective effects. This study is the first to demonstrate that erucin protects against cardiac hypertrophy by improving mitochondrial function through the activation of the Nrf2-Sirt3 pathway. Erucin may emerge as a promising therapeutic candidate for treating cardiac hypertrophy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.8458 | DOI Listing |
Cardiovasc Ther
September 2025
Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Yes-associated protein (YAP) is a major downstream nuclear coactivator of the Hippo pathway and is activated during myocardial hypertrophy. Verteporfin, a YAP inhibitor, may serve as a potential treatment for myocardial hypertrophy. This study was aimed at exploring the role and underlying mechanisms of verteporfin in isoproterenol (ISO)-induced myocardial hypertrophy both in vivo and in vitro.
View Article and Find Full Text PDFCureus
August 2025
Medicine/Cardiology, Madigan Army Medical Center, Tacoma, USA.
Apical hypertrophic cardiomyopathy (ApHCM) is an uncommon, nonobstructive form of hypertrophic cardiomyopathy (HCM) that is associated with an increased risk of ventricular aneurysms, atrial fibrillation, heart failure, and cardiac death. In this case report, a 63-year-old male patient was found to have deeply negative T waves on electrocardiogram (EKG) during a routine preoperative evaluation in an outpatient internal medicine clinic. Imaging with echocardiography and cardiac magnetic resonance confirmed the diagnosis of ApHCM.
View Article and Find Full Text PDFVet Med Int
August 2025
Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Autism spectrum disorder (ASD) is characterized by impairments in social communication and the presence of additional conditions such as heart disease. Oxidative stress has been linked to the severity of autism, suggesting a potential role for antioxidants in mitigating its effects. Aspirin, an antioxidant and anti-inflammatory drug, has shown protective effects on heart function.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2025
The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China.
tRNA-derived small RNAs (tsRNAs) are a class of non-coding RNAs that are generated by cleavage of precursors or mature tRNAs under stress conditions such as hypoxia, oxidative stress and nutrient deficiency. Recent breakthroughs in RNA sequencing technology have revealed their association with cardiovascular diseases (CVDs), including myocardial infarction (MI), atherosclerosis, cardiac hypertrophy, aortic coarctation, and pulmonary arterial hypertension. tsRNAs play important biological functions in these diseases, including the inhibition of apoptosis, epigenetic modification, intercellular signaling mediation, translation, and regulation of gene expression.
View Article and Find Full Text PDFBiomed Eng Lett
September 2025
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
Abstract: Hypertrophic cardiomyopathy (HCM) is a common hereditary heart disease and is the leading cause of sudden cardiac death in adolescents. Septal hypertrophy (SH) and apical hypertrophy (AH) are two common types. The former is characterized by abnormal septal myocardial thickening and the latter by left ventricular apical hypertrophy, both of which significantly increase the risk of heart failure, arrhythmias, and other serious complications.
View Article and Find Full Text PDF