Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Together with carriers in the liver and small intestine, kidney transporters function to conserve and compartmentalise bile acids in the enteronephrohepatic circulation. In patients with liver disease, systemic bile acid levels are elevated, undergo increased renal glomerular filtration, and contribute to the pathogenesis of cholemic nephropathy and acute kidney injury. In this review, we describe mechanisms for renal bile acid transport and highlight very recent discoveries that challenge current paradigms on the pathogenesis of cholemic nephropathy and renal tubule cast formation. We also discuss the therapeutic potential of inhibiting the kidney apical sodium-dependent bile acid transporter to redirect bile acids into urine for elimination, reduce hepatobiliary accumulation and systemic levels of bile acids, and treat cholemic nephropathy. In conclusion, a deeper understanding of the enteronephrohepatic bile acid axis is providing insights into novel strategies to protect both the liver and kidney in patients with liver disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2025.05.009DOI Listing

Publication Analysis

Top Keywords

bile acid
20
bile acids
16
cholemic nephropathy
12
bile
9
enteronephrohepatic circulation
8
therapeutic potential
8
systemic bile
8
acid transporter
8
patients liver
8
liver disease
8

Similar Publications

Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.

View Article and Find Full Text PDF

Pyroptosis is a lytic and pro-inflammatory regulated cell death pathway mediated by pores formed by the oligomerization of gasdermin proteins on cellular membranes. Different pro-inflammatory molecules such as interleukin-18 are released from these pores, promoting inflammation. Pyroptotic cell death has been implicated in many pathological conditions, including cancer and liver diseases.

View Article and Find Full Text PDF

Tauroursodeoxycholic acid modulates neuroinflammation via STING/NF-κB inhibition after traumatic brain injury.

Int Immunopharmacol

September 2025

Department of Medical Science Research Center, Brain Injury and Drug Prevention Research Key Laboratory of Shaanxi Universities, Peihua University, Xi'an, Shaanxi 710125, China; Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie 551700, China; School of Life and Health Sc

The incidence of traumatic brain injury (TBI) has demonstrated a marked escalation recently. Nevertheless, there remains a critical paucity of effective drug interventions targeting persistent neuroinflammation-induced damage following TBI. STING/NF-κB axis-induced pyroptosis emerges as a pivotal mechanism driving persistent neuroinflammation, providing it as a potential target for multi-pathway precision therapeutic in TBI.

View Article and Find Full Text PDF

Antibiotic growth promoters (AGPs) are increasingly subject to global regulatory restrictions and consumer pressure, driving the poultry industry toward antibiotic-free production systems. This shift has accelerated the search for effective alternatives, including innovative microbial additives, organic acids, phytogenics, and other bioactive compounds capable of supporting digestive function and enhancing immune competence in poultry. The present study reported the isolation and characterization of a novel Bacillus velezensis strain, BV-OLS1101, possessing robust probiotic attributes and a distinctive capacity to produce a serine protease subtilisin.

View Article and Find Full Text PDF

Gut microbiota and metabolites related intra-patient variability of tacrolimus pharmacokinetics predicted adverse one-year outcomes following kidney transplantation.

Int Immunopharmacol

September 2025

Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Key Laboratory of Translational Research in Transplantation Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Clinical Resea

Kidney transplantation (KT) is an effective treatment for end-stage renal disease, with over 90 % of recipients requiring lifelong tacrolimus (Tac). However, The Tac pharmacokinetics exhibit high intra-patient variability (IPV), posing significant challenges. This study included 102 KT recipients at our center from October 2022 to December 2023.

View Article and Find Full Text PDF