Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genome-wide association studies (GWASs) of melanoma risk have identified 68 independent signals at 54 loci. For most loci, specific functional variants and their respective target genes remain to be established. Capture-HiC is an assay that links fine-mapped risk variants to candidate target genes by comprehensively mapping chromatin interactions. We performed a melanoma GWAS region-focused capture-HiC assay in human primary melanocytes to identify physical interactions between fine-mapped risk variants and potential causal melanoma-susceptibility genes. Overall, chromatin-interaction data alone nominated potential causal genes for 61 of the 68 melanoma risk signals, identifying many candidates beyond those reported by previous studies. We further integrated these data with epigenomic (chromatin state, accessibility), gene expression (expression quantitative trait locus [eQTL]/transcriptome-wide association study [TWAS]), DNA methylation (methylation QTL [meQTL]/methylome-wide association study [MWAS]), and massively parallel reporter assay (MPRA) data generated from melanoma-relevant cell types to prioritize potentially cis-regulatory variants and their respective candidate gene targets. From the set of fine-mapped variants across these loci, we identified 140 prioritized credible causal variants linked to 195 candidate genes at 42 risk signals. In addition, we developed an integrative scoring system to facilitate candidate gene prioritization, integrating melanocyte and melanoma datasets. Notably, at several GWAS risk signals, we observed long-range chromatin connections (500 kb to >1 Mb) with distant candidate target genes. We validated several such cis-regulatory interactions using CRISPR inhibition, providing evidence for known cancer driver genes MDM4 and CBL, as well as the SRY-box transcription factor SOX4, as likely melanoma risk genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256899PMC
http://dx.doi.org/10.1016/j.ajhg.2025.04.015DOI Listing

Publication Analysis

Top Keywords

melanoma risk
12
target genes
12
risk signals
12
mapping chromatin
8
chromatin interactions
8
gene targets
8
variants respective
8
genes
8
capture-hic assay
8
fine-mapped risk
8

Similar Publications

Background: There is a demand for population level research on the potential genetic-basis of mesothelioma (e.g. BRCA1-associated protein-1 [BAP1]) independent of other risk factors, such as amphibole asbestos exposure.

View Article and Find Full Text PDF

Purpose: Tebentafusp has emerged as the first systemic therapy to significantly prolong survival in treatment-naïve HLA-A*02:01 + patients with unresectable or metastatic uveal melanoma (mUM). Notably, a survival benefit has been observed even in the absence of radiographic response. This study aims to investigate the feasibility and prognostic value of artificial intelligence (AI)-assisted quantification and metabolic response assessment of [F]FDG long axial field-of-view (LAFOV) PET/CT in mUM patients undergoing tebentafusp therapy.

View Article and Find Full Text PDF

Clinical Pharmacology Characterization of the First-In-Class Oncolytic Viral Therapy T-VEC in Adults and Pediatric Subjects.

J Clin Pharmacol

September 2025

Clinical Pharmacology, Modeling and Simulation, Amgen Inc., South San Francisco, CA, USA.

Oncolytic viruses are an emerging class of immunotherapies for cancer treatment. Talimogene laherparepvec (T-VEC) is a first-in-class oncolytic virus approved globally for advanced melanoma. Herein, we describe the quantitative clinical pharmacology aspects of T-VEC that supported the development of this unique therapy.

View Article and Find Full Text PDF

Developing a prognostic model of glutamine metabolism-related genes associated with clinical features and immune status in melanoma.

Front Oncol

August 2025

Department of Radiology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China.

Introduction: Melanoma exhibited a poor prognosis due to its aggression and heterogeneity. The effect of glutamate metabolism promoting tumor progression on cutaneous melanoma remains unknown. Herein, glutamine metabolism-related genes (GRGs) were identified followed by constructing a prognostic model for melanoma via bioinformatics analysis.

View Article and Find Full Text PDF

Background: Anorectal malignant melanoma (ARMM) is an exceedingly rare and highly aggressive malignancy characterized by low prevalence, high misdiagnosis rates, and frequent recurrence/metastasis.

Case Report: This report details the case of a 51-year-old woman presenting with persistent bright red blood in her stool. Digital rectal examination revealed a firm, spherical mass approximately 4 cm from the anal verge.

View Article and Find Full Text PDF