98%
921
2 minutes
20
Background: Information on global transcriptomic changes in the porcine ampulla after ovulation is crucial for understanding of oviductal physiology at the molecular level. The objective of the present study was to investigate the differentially expressed genes (DEGs) and signalling pathways regulating the functionality of ampulla in pigs post-ovulation.
Methods And Results: The RNA-sequencing of the post-ovulatory ampulla (POA) and early luteal ampulla (ELA) tissues was conducted using Illumina NextSeq2000. The R package NOISeq was used to obtain significantly differentially expressed genes (DEGs) with the probability of differential expression (1-FDR) value ≥ 0.95 and log fold change (logFC) ≥ 1, which revealed 817 DEGs (657 up- and 160 down-regulated) in the POA vs. ELA group comparison. These DEGs were functionally annotated with various gene ontology terms like sterol biosynthetic process, growth, cell migration, and Reactome pathways like signal transduction, metabolism, and cell cycle, indicating key role of these molecular events in POA. The WNT, TNFR2 non-canonical NF-kB, and hedgehog signalling pathways along with the activation of the immune system process, were enriched in the POA vs. ELA group, which indicates their role in cell-cell interactions and cell fate determination in remodelling the oviductal microenvironment during transition from estrogen to progesterone domination. The highly connected upregulated hub genes ESR1, RAD51, YARS1, TYMS and CDK2 can be regarded as key regulatory factors in synchronizing the changes in POA at the molecular level in the oviduct.
Conclusion: The present study revealed several DEGs, signalling pathways and novel modulatory factors associated with the ampullary physiology during early embryonic development in the POA, which may influence fertility and litter size in pigs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-025-10605-0 | DOI Listing |
J Proteome Res
September 2025
Department of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Street, 30-663 Krakow, Poland.
Premature infants are at high risk for brain injuries such as intraventricular hemorrhage and periventricular white matter injury. This study applies omics technology to analyze urinary protein expression, aiming to clarify preterm brain injury mechanisms and identify therapeutic targets. Urine samples were collected from 29 very preterm infants (VPI) without brain injury and 11 with moderate/severe injury at eight time points: Days 1, 2, 3, 4, 6, 8, 28, and term-equivalent age (TEA).
View Article and Find Full Text PDFAm J Reprod Immunol
September 2025
Department of Laboratory Animal Science, Kunming Medical University, Kunming, China.
Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.
Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.
PLoS One
September 2025
Biobank of Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.
View Article and Find Full Text PDFNeurol Res
September 2025
Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China.
Background: We conducted a transcriptomic analysis to examine cerebellar transcriptional changes in a mouse model of chronic intermittent alcohol exposure.
Methods: We established a mouse model of chronic intermittent alcohol exposure and conducted a cerebellar transcriptomic analysis. After identifying differentially expressed genes, we analyzed pathway enrichment using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology.
Mol Hum Reprod
September 2025
Department of Obstetrics and Gynecology, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
Infertility impacts up to 17.5% of reproductive-aged couples worldwide. To aid in conception, many couples turn to assisted reproductive technology, such as IVF.
View Article and Find Full Text PDF