98%
921
2 minutes
20
Background: Asthma is a chronic inflammatory disease characterized by airway remodeling and immune dysregulation. This study aimed to explore the mechanisms by which M2 macrophage-derived exosomes (M2Φ-Exos) regulate airway inflammation in asthma by modulating epithelial cell proliferation and apoptosis.
Methods: M2Φ-Exos were extracted and characterized by morphology, size, and marker protein expression. In vitro, the effects of M2Φ-Exos on House Dust Mites (HDM)-stimulated mouse lung epithelial cells (MLE-12s) were evaluated using western blotting to analyze Proliferating Cell Nuclear Antigen (PCNA), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and cleaved caspase-3 expression. In vivo, M2Φ-Exos were administered to HDM-induced asthmatic mice to assess their impact on airway inflammation, epithelial remodeling, and proliferation-apoptosis balance using immunohistochemistry, immunofluorescence, and western blotting. Cytokine levels in lung tissue and bronchoalveolar lavage fluid (BALF) were measured by qRT-PCR and ELISA.
Results: M2Φ-Exos displayed typical cup-shaped morphology, an average diameter of 115.5 nm, and expressed marker proteins CD9, TSG101, and CD63. MLE-12 cells internalized M2Φ-Exos, leading to reduced abnormal proliferation and apoptosis in HDM-stimulated cells. In asthmatic mice, M2Φ-Exos alleviated airway inflammation and epithelial thickening while reducing PCNA, cleaved caspase-3, and Bax levels and increasing Bcl-2 expression. M2Φ-Exos suppressed pro-inflammatory cytokines (IL-4, IL-5, IL-13) and Transforming growth factor (TGF)-β, while enhancing anti-inflammatory cytokine IFN-γ and IL-10.
Conclusion: These findings demonstrate that M2Φ-Exos regulate the imbalance in epithelial proliferation and apoptosis in asthma, reducing inflammation and mitigating tissue remodeling, and provide new insights into potential therapeutic strategies for asthma management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090695 | PMC |
http://dx.doi.org/10.1186/s12950-025-00444-y | DOI Listing |
Eur J Med Chem
August 2025
Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124, Parma, Italy. Electronic address:
Cystic fibrosis (CF) is a multifaceted disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The resulting thick mucus accumulation increases the risk of microbial infections, leading to chronic lung inflammation, progressive tissue damage, and pulmonary exacerbations (PEs). Respiratory viruses may facilitate bacterial colonization, significantly contributing to PEs.
View Article and Find Full Text PDFSleep Breath
September 2025
School of medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
Introduction: It is well known that Obstructive Sleep Apnea (OSA) is a complex disease characterized by an Upper Airway (UA) collapse during sleep, with potential consequences on ENT districts. Recent evidence suggests a possible association with Eustachian Tube Dysfunction (ETD). However, the potential effects of both surgical and non-surgical therapeutic strategies on ET function remain poorly explored in the current literature.
View Article and Find Full Text PDFInt J Chron Obstruct Pulmon Dis
September 2025
The First Clinical Medical College of Lanzhou University, Lanzhou, People's Republic of China.
Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic respiratory disorder characterized by airway inflammation and irreversible airflow limitation. Its marked heterogeneity and complexity pose significant challenges to traditional clinical assessments in terms of prognostic prediction and personalized management. In recent years, the exploration of biomarkers has opened new avenues for the precise evaluation of COPD, particularly through multi-biomarker prediction models and integrative multimodal data strategies, which have substantially improved the accuracy and reliability of prognostic assessments.
View Article and Find Full Text PDFBiomater Biosyst
September 2025
ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Introduction: The airway mucosa plays a crucial role in protection and various physiological functions. Current methods for restoring airway mucosa, such as myocutaneous flaps or split skin grafts, create a stratified squamous layer that lacks the cilia and mucus-secreting glands of the native columnar-lined airway. This study examines the application of various injectable biopolymers as active molecules for a potential approach to regenerating laryngeal epithelial tissue.
View Article and Find Full Text PDFFront Allergy
August 2025
Department of Surgery, University of Auckland, Auckland, New Zealand.
Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are common respiratory conditions that significantly impact patient health and contribute to substantial healthcare burdens. While conventional treatments offer symptom relief, many patients continue to experience persistent symptoms, side effects, or resistance to standard therapies. This highlights the growing need for novel, non-invasive, and sustainable therapeutic strategies to manage chronic airway inflammation.
View Article and Find Full Text PDF