Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Symbiotic microbiota in vertebrates play critical roles in establishing and enhancing host resistance to pathogenic infections as well as maintaining host homeostasis. The interactions and mechanisms of commensal microbiota-mediated mucosal immune systems have been extensively studied in mammals and, to a lesser extent, in birds. However, despite several studies emphasizing the role of mucosal microbiota in controlling pathogen infections in teleost fish, limited knowledge exists regarding the core microbiota and the mechanisms by which they contribute to resistance against viral infections.

Results: Our findings suggest that viral infections shape clinical manifestations of varying severity in infected fish. An increased abundance of Bacillus spp. in the mild phenotype indicates its crucial role in influencing fish immunity during viral infections. To confirm that Bacillus spp. act as a core contributor against viral infection in fish, we isolated a representative strain of Bacillus spp. from largemouth bass (Micropterus salmoides), which was identified as Bacillus velezensis (Bv), and subsequently conducted feeding trials. Our study demonstrated that dietary supplementation with Bv significantly reduced mortality from largemouth bass virus (LMBV) infection in bass by enhancing host immunity and metabolism as well as by regulating the microbial community. Furthermore, multi-omics analysis elucidated the mechanism by which Bacillus spp. confer resistance to viral infections by regulating the production of diglyceride (DG) during lipid metabolism.

Conclusions: Our study provides the first evidence that Bacillus spp. are a core microbiota for combating viral infections in teleost fish, shedding light on the conserved functions of probiotics as a core microbiota in regulating microbial homeostasis and mucosal immunity across the vertebrate lineage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083065PMC
http://dx.doi.org/10.1186/s40168-025-02124-8DOI Listing

Publication Analysis

Top Keywords

bacillus spp
24
viral infections
16
teleost fish
12
core microbiota
12
multi-omics analysis
8
enhancing host
8
infections teleost
8
resistance viral
8
spp core
8
largemouth bass
8

Similar Publications

Molecular approaches for enhancing fermented bamboo-derived feed additives: A sustainable nutritional innovation for poultry.

Poult Sci

September 2025

Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China. Electronic address:

The function of fermented and non fermented bamboo-derived feed additives in poultry nutrition is critically assessed in this review, with emphasis on the effects on growth performance, immunity, intestinal health, egg and meat quality. Fermented bamboo feeds have become a promising nutritional innovation in poultry production. The use of bamboo leaves and tender shoots in chicken feed is limited due to the presence of lignin and cellulose.

View Article and Find Full Text PDF

The cultivation of cowpea (), a vital vegetable crop, faces significant threats from spp.-induced root rot. In this study, three fungal pathogens ( HKFf, HKFi, and HKFo) were isolated from symptomatic cowpea plants, and we screened 90 rhizobacteria from healthy rhizospheres using six culture media.

View Article and Find Full Text PDF

High salt concentrations affect the electron transport chain of bacterial cells, leading to an oxidative stress response that encompasses the formation of reactive oxygen species (ROS). The salt 2,3,5-triphenyltetrazolium chloride (TTC) triggers antibacterial activity against the phytopathogen in species; however, the underlying mechanisms remain unknown. Here, we tested the hypothesis that TTC-inducible activity is related to the formation of ROS and its metabolites.

View Article and Find Full Text PDF

Plant growth-promoting bacteria as biological control agents for sustainable agriculture: targeting root-knot nematodes.

Front Plant Sci

August 2025

Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal.

The increasing frequency of extreme weather events affects ecosystems and threatens food production. The reduction of chemical pesticides, together with other ecological approaches, is crucial to more sustainable agriculture. Plant-parasitic nematodes (PPN), especially root-knot nematodes (RKN), spp.

View Article and Find Full Text PDF