Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Predicting organic reaction feasibility and robustness against environmental factors is challenging. We address this issue by integrating high throughput experimentation (HTE) and Bayesian deep learning. Diverging from existing HTE studies focused on niche chemical spaces, in this work, our in-house HTE platform conducted 11,669 distinct acid amine coupling reactions in 156 working hours, yielding the most extensive single HTE dataset at a volumetric scale for industrial delivery. Our Bayesian neural network model achieved a benchmark for prediction accuracy of 89.48% for reaction feasibility. Furthermore, our fine-grained uncertainty disentanglement enables efficient active learning, reducing 80% of data requirements. Additionally, our uncertainty analysis effectively identifies out-of-domain reactions and evaluates reaction robustness or reproducibility against environmental factors for scaling up, offering a practical framework for navigating chemical spaces and designing highly robust industrial processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081921PMC
http://dx.doi.org/10.1038/s41467-025-59812-0DOI Listing

Publication Analysis

Top Keywords

reaction feasibility
12
feasibility robustness
8
high throughput
8
bayesian deep
8
deep learning
8
environmental factors
8
chemical spaces
8
global reaction
4
robustness prediction
4
prediction high
4

Similar Publications

Measurable neuromotor control deficits during functional task performance could provide objective criteria to aid in concussion diagnosis. However, many tools which measure these constructs are unidimensional and not clinically feasible. The purpose of this study was to assess the classification accuracy of a machine learning model using features measured by a clinically feasible movement-based assessment system (Mizzou Point-of-care Assessment System (MPASS) between athletes with and without concussion.

View Article and Find Full Text PDF

The safe disposal of heavy metal elements (Pb, Zn, Cu, etc.) in copper smelting slag and efficient treatment of phosphogypsum are urgent. To explore the feasibility of co-processing copper smelting slag and phosphogypsum, this study used PbO and CaSO as raw materials to investigate the sulfidation roasting process and flotation separation of roasted products.

View Article and Find Full Text PDF

Cat, dog, and horse allergies: emerging new insights.

Turk J Pediatr

September 2025

Division of Allergy and Asthma, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Türkiye.

Animal allergens, particularly those from cats, dogs, and horses, are significant risk factors for the development of allergic diseases in childhood. Managing animal allergies requires allergen avoidance and, when this is not feasible, specific immunotherapy. Patient history remains the cornerstone of diagnosis, providing the foundation for diagnostic algorithms.

View Article and Find Full Text PDF

The formation of carbinolamine represents the crucial initial step in the aldol reaction, specifically involving the interaction between p-nitrobenzaldehyde and acetone, facilitated by amine-catalyzed mesoporous silica nanoparticles (amine-MSN). In this process, a nitrogen atom from propylamine, which acts as the catalytic moiety, engages in the formation of a covalent bond with a carbon atom from acetone, leading to the generation of a carbinolamine intermediate. This reaction is significantly influenced by the presence of silanol groups located on the surface of the amine-MSN, which contribute to the catalytic activity.

View Article and Find Full Text PDF

Truxenone-Based Covalent Organic Framework/Carbon Nanotube Composite for High-Performance Low-Temperature Sodium-Ion Batteries.

Angew Chem Int Ed Engl

September 2025

School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074, China.

Low-temperature rechargeable batteries face great challenges due to the sluggish reaction kinetics. Redox covalent organic frameworks (COFs) with porous structures provide a viable solution to accelerate the ionic diffusion and reaction kinetics at low temperatures. However, the applications of COFs in low-temperature batteries are still at their infancy stage.

View Article and Find Full Text PDF