98%
921
2 minutes
20
Pediatric solid tumors represent a significant subset of childhood cancers, accounting for approximately 60% of new diagnoses. Despite advancements in therapeutic strategies, survival rates remain markedly disparate between high-income and resource-limited settings, underscoring the urgent need for novel and effective treatments. Lipid metabolic reprogramming is a fundamental hallmark of cancer, driving tumor progression, therapeutic resistance, and immune evasion through enhanced fatty acid uptake, increased lipid synthesis, and activated fatty acid β-oxidation (FAO). Ubiquitination, a dynamic post-translational modification mediated by the ubiquitin-proteasome system (UPS), plays a crucial role in regulating lipid metabolism by modulating the stability and activity of key metabolic enzymes and transporters involved in cholesterol and fatty acid pathways. This review comprehensively examines the complex interplay between ubiquitination and lipid metabolic reprogramming in pediatric solid tumors. It delineates the mechanisms by which ubiquitination influences cholesterol biosynthesis, uptake, efflux, and fatty acid synthesis and oxidation, thereby facilitating tumor growth and survival. Furthermore, the review identifies potential UPS-mediated therapeutic targets and explores the feasibility of integrating ubiquitination-based strategies with existing treatments. By targeting the UPS to disrupt lipid metabolism pathways, novel therapeutic avenues may emerge to enhance treatment efficacy and overcome resistance in pediatric oncology. This synthesis of current knowledge aims to provide a foundation for the development of innovative, precision medicine approaches to improve clinical outcomes for children afflicted with solid tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075147 | PMC |
http://dx.doi.org/10.3389/fimmu.2025.1554311 | DOI Listing |
J Cancer Res Clin Oncol
September 2025
Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
Purpose: Next-generation sequencing (NGS) has revolutionized cancer treatment by enabling comprehensive cancer genomic profiling (CGP) to guide genotype-directed therapies. While several prospective trials have demonstrated varying outcomes with CGP in patients with advanced solid tumors, its clinical utility in colorectal cancer (CRC) remains to be evaluated.
Methods: We conducted a prospective observational study of CGP in our hospital between September 2019 and March 2024.
Rev Gastroenterol Mex (Engl Ed)
September 2025
Servicio de Clínica Médica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina.
Introduction And Aims: The aim of this study was to estimate the number of patients diagnosed with colorectal cancer (CRC) that underwent their first screening colonoscopy and to describe the endoscopic and anatomopathologic findings and characteristics of the patients that had a screening colonoscopy for CRC.
Materials And Methods: A cross-sectional study was conducted that included patients aged 50 to 79 years, with prepaid healthcare at a tertiary care hospital, that underwent a first colonoscopy within the time frame of 2013 and 2022. The demographic data, endoscopic findings, and biopsy results were collected.
J Immunother Cancer
September 2025
Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, Massachusetts, USA
Background: Tumor heterogeneity and antigen escape are mechanisms of resistance to chimeric antigen receptor (CAR)-T cell therapy, especially in solid tumors. Targeting multiple antigens with a unique CAR construct could be a strategy for a better tumor control than monospecific CAR-T cells on heterogeneous models. To overcome tumor heterogeneity, we targeted mesothelin (meso) and Mucin 16 (MUC16), two antigens commonly expressed in solid tumors, using a tandem CAR design.
View Article and Find Full Text PDFJ Immunother Cancer
September 2025
Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of California, Irvine, California, USA
Background: γδ T cells possess unique immunological features including tissue tropism, major histocompatibility complex-independent antigen recognition, and hybrid T/natural killer cell properties that make them promising candidates for cancer immunotherapy. However, the therapeutic potential of Vδ1 γδ T cells, particularly when engineered with chimeric antigen receptors (CARs), remains underexplored in solid tumors such as pancreatic cancer (PC), largely due to their low abundance in peripheral blood and challenges in ex vivo expansion. This study aims to directly compare the preclinical safety and efficacy among CAR-engineered Vδ1 γδ T cells, Vδ2 γδ T cells, and conventional αβ T cells.
View Article and Find Full Text PDF