98%
921
2 minutes
20
This study investigated the chemical composition and anti-inflammatory effects of essential oils extracted from flower, , Brazilian , , , and using steam distillation and gas chromatography-mass spectrometry (GC-MS). Their anti-inflammatory activities were assessed in LPS-stimulated RAW 264.7 cells. Among them, essential oil (CRPEO) exhibited the most potent anti-inflammatory effects, with D-Limonene (76.51%), α-Pinene (2.68%), and Linalool (2.11%) as its primary constituents. The CCK-8 assay showed that the essential oil exhibited no cytotoxicity on HaCaT cells at a concentration of 50 μg/mL. CRPEO significantly preserved cell viability and reduced the production of pro-inflammatory mediators, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and nitric oxide (NO). Gene expression analysis via RT-qPCR further confirmed the downregulation of TNF-α, IL-6, IL-1β, and inducible nitric oxide synthase (iNOS) at the mRNA level. Network pharmacology and molecular docking studies were employed to identify α-Bulnesene as a key bioactive component of CRPEO and revealed that its principal target is the NLR Family Pyrin Domain-Containing 3 (NLRP3) inflammasome. These findings highlight the strong anti-inflammatory potential of CRPEO and suggest its promising therapeutic application for inflammation-related conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071632 | PMC |
http://dx.doi.org/10.3390/foods14091455 | DOI Listing |
JAMA Netw Open
September 2025
Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla.
Importance: Janus kinase (JAK) inhibitors are highly effective medications for several immune-mediated inflammatory diseases (IMIDs). However, safety concerns have led to regulatory restrictions.
Objective: To compare the risk of adverse events with JAK inhibitors vs tumor necrosis factor (TNF) antagonists in patients with IMIDs in head-to-head comparative effectiveness studies.
Eur J Clin Microbiol Infect Dis
September 2025
Department of Infectious and Tropical Diseases, Toulouse University Hospital, Toulouse, 31059 Cedex 9, France.
Purpose: This narrative review aims to provide an overview of current knowledge on mpox, emphasizing updated epidemiology and recent advances in treatment and prevention strategies, in light of the latest outbreaks.
Methods: We searched PubMed and Google Scholar for publications on 'Mpox' and 'Monkeypox' up to June 5, 2025. Grey literature from governmental and health agencies was also accessed for outbreak reports and guidelines where published evidence was unavailable.
Metab Brain Dis
September 2025
Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Brain ischemia is a major global cause of disability, frequently leading to psychoneurological issues. This study investigates the effects of 4-aminopyridine (4-AP) on anxiety, cognitive impairment, and potential underlying mechanisms in a mouse model of medial prefrontal cortex (mPFC) ischemia. Mice with mPFC ischemia were treated with normal saline (NS) or different doses of 4-AP (250, 500, and 1000 µg/kg) for 14 consecutive days.
View Article and Find Full Text PDFInflammopharmacology
September 2025
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Background: Pentoxifylline (PTX), a methylxanthine derivative, has been recognized as a potential anti-inflammatory treatment across various conditions, yet its effects on inflammatory markers remain inconsistent. This systematic review/meta-analysis evaluated the impact of PTX on serum levels and gene expression of key inflammatory markers in randomized controlled trials (RCTs).
Methods: A systematic search was conducted in PubMed, Scopus, Embase, Web of Science, and ProQuest up to May 2025.
Inflammopharmacology
September 2025
Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
The NOD‑like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a key molecular complex that amplifies inflammatory cascades by maturing interleukin‑1 beta (IL-1β) and interleukin‑18 (IL-18) and inducing pyroptosis. It serves as a major driver and co-driver of numerous diseases associated with chronic inflammation. Dysregulated NLRP3 activation contributes to the progression of disorders such as rheumatoid arthritis, inflammatory bowel disease, neurodegenerative diseases and atherosclerosis.
View Article and Find Full Text PDF