98%
921
2 minutes
20
During seasonal influenza or emerging respiratory outbreaks, rapid home-based multiplex molecular point-of-care testing (POCT) for respiratory pathogens is crucial for early diagnosis and intervention, particularly in vulnerable populations. However, existing POCT systems, primarily designed for clinical settings, are often too complex, costly, and reliant on trained operators, limiting their suitability for home use. To overcome these barriers, we introduce a microfluidic cartridge-based system leveraging recombinase polymerase amplification (RPA) for multiplexed detection of respiratory pathogens in home environments. The microfluidic cartridge is designed with three parallel channels-each integrating a lysis chamber, an RPA chamber preloaded with lyophilized reagents, and an air storage chamber. Each detection channel enables extraction-free, single-channel 3-plex RPA assays, and by combining three-channel parallel detection, the system achieves simultaneous identification of eight respiratory pathogens and one internal control in under 25 min. A novel pneumatic pressure pumping strategy ensures precise flow control through dynamic bladder compression, paired with microchannel hydraulic resistance matching to guarantee uniform volumetric distribution and synchronized flow across all channels. Furthermore, a dynamic mixing method promotes homogeneous mixing of RPA reagents with lysed samples a bidirectional flow between the lysis and RPA chambers, enhancing assay reliability. Our microfluidic design enables significant miniaturization, yielding a compact, lightweight system (<1 kg) suitable for handheld or desktop use. Its low power consumption (3 W) and remarkable cost-effectiveness ($1.4 per test) enhance the system's practicality and accessibility for home settings. Validation with 356 nasopharyngeal swabs further confirms its robust performance, achieving high sensitivity (>97%) and specificity (>99%), ensuring reliable at-home diagnosis of respiratory co-infections without requiring professional operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5lc00343a | DOI Listing |
J Med Chem
September 2025
Guangzhou National Laboratory, Guangzhou 510005, P. R. China.
Respiratory syncytial virus (RSV) is a major pathogen causing acute respiratory infections, and the RSV fusion glycoprotein (F) has been identified as a key target for developing small-molecule inhibitors. Based on our prior identification of lonafarnib as an F protein inhibitor, medicinal chemistry efforts led to the development of , which exhibits significantly enhanced potency against both laboratory and clinical RSV isolates in cellular assays. Time-of-addition and SPR assays indicate that inhibits viral entry by targeting the RSV F protein, but has farnesyltransferase-independent antiviral efficacy.
View Article and Find Full Text PDFJ Innate Immun
September 2025
Respiratory system diseases, including infections, inflammation, fibrosis, cancer, and others, impose a substantial burden on human health worldwide. The respiratory tract is constantly exposed to external stimuli due to its connection with the outside environment. Therefore, the immune system plays a crucial role in respiratory diseases.
View Article and Find Full Text PDFBMJ Open
September 2025
Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
Introduction: Nipah virus (NiV) is a bat-transmitted paramyxovirus causing recurrent, high-mortality outbreaks in South and South-East Asia. As a WHO priority pathogen, efforts are underway to develop therapies like monoclonal antibodies and small-molecule antivirals, which require evaluation in clinical trials. However, trial design is challenging due to limited understanding of NiV's clinical characteristics.
View Article and Find Full Text PDFInt J Antimicrob Agents
September 2025
Department of Pediatric Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, 130021, China. Electronic address:
The global proliferation of antibiotic-resistant Staphylococcus aureus, particularly methicillin-resistant Staphylococcus aureus (MRSA), highlights the urgent need for innovative antivirulence strategies. The redundancy and multiplicity of virulence factors produced by S. aureus necessitate interventions capable of concurrently targeting multiple virulence mechanisms.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
Following the global COVID-19 pandemic, greater attention has been paid to public health safety, especially in hospital environments. In waiting areas with interconnected spaces, complex airflow, unclear bioaerosol dispersion, and the limitations of traditional control methods pose major challenges. This study combined real-world experiments and numerical simulations to investigate the airborne transmission characteristics of pathogen-laden aerosols in a hospital waiting corridor.
View Article and Find Full Text PDF