Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Using fluorescence parameters of tryptophanyl and bound ANS, the acid-induced structural transitions of defatted monomeric human serum albumin were measured as pH-dependences from 6 to 2.5 in the wide range of temperature (10 to 45 degrees C) and ionic strength (from 0.001 to 0.2 M NaCl or 0.067 M Na2SO4). Temperature rise and decrease in ionic strength value result in the splitting of the N-F-transition onto two stages, N-F1 and F1-F2. The N-F1-transition is accompanied by the blue shift of tryptophanyl and ANS fluorescence spectra and increase in the ANS emission yield. The F1-F2-stage is manifested in an additional blue spectral shift and a sharp drop of the ANS emission yield, which is shown to be due to the lowering of albumin affinity for the dye. In the acidic-extension stage (F2-E), the spectra undergo a red shift which means that the nanosecond dipole relaxation of protein groups and bound water becomes faster. In the F2 from, the albumin affinity for ANS is significantly lowered; the association constant of the primary binding site is lower by an order of quantity and two secondary sites are practically disappeared. The complex effect of temperature, ionic strength and pH changes on the properties of ANS-binding sites is considered as a model of possible control influences of these factors upon the albumin transport of amphiphilic anions in organism.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ionic strength
12
human serum
8
serum albumin
8
temperature ionic
8
ans emission
8
emission yield
8
albumin affinity
8
albumin
5
ans
5
[the medium
4

Similar Publications

Chemically Lithiated Poly(vinylidene difluoride) with In Situ Generated LiF Nanofiller as Hybrid Artificial Layer for Stable Lithium Metal Anodes.

Small

September 2025

Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer  poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.

View Article and Find Full Text PDF

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

Dual-functional hydrochar via hydrothermal carbonization for norfloxacin removal: Fractal adsorption kinetics and mechanism elucidation.

Sci Total Environ

September 2025

Laboratoire Physico-Chimie des Matériaux, Substances Naturelles et Environnement, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier, Morocco.

Escalating concentrations of norfloxacin (NFX) in surface and wastewaters demand sustainable remediation strategies. In this study, dual-functional hydrochars were synthesized from argan nut shells (ArNS) via hydrothermal carbonization (HTC), with process conditions optimized by varying temperature (150-200 °C) and residence time (2-6 h). Among the materials, H1:5@150-4-prepared at 150 °C for 4 h with a biomass-to-water ratio of 1:5-exhibited the best performance, achieving a monolayer NFX adsorption capacity of 27.

View Article and Find Full Text PDF

Herein, we present a simple and novel method to prepare soybean protein isolate (SPI)-based hydrogels with good mechanical characteristics. First, SPI/DSA hydrogels were prepared using SPI and different M/G ratios (1:2, 1:1, and 2:1) of dialdehyde sodium alginate (DSA). Then, the hydrogels were immersed in CaCl2 solution to form SPI/DSA@Ca double network hydrogels.

View Article and Find Full Text PDF