Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. The difficulty in early diagnosis, combined with the tendency for tumor invasion and metastasis, creates significant challenges for current therapeutic approaches. Additionally, the pharmaceutical agents currently used to treat NSCLC often come with severe side effects and can lead to drug resistance. As a result, there is an urgent need to develop new therapeutic agents with fewer side effects that can effectively overcome resistance mechanisms. Flavonoids, a prominent class of natural compounds, have shown promise in preventing and treating various cancers. By structurally optimizing flavonoids, it is possible to enhance their anticancer activity and improve their pharmacokinetic properties. This article reviews the different mechanisms of action and structure-activity relationships (SARs) of flavonoid derivatives in treating NSCLC, aiming to provide a scientific foundation for developing new therapeutic agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029265PMC
http://dx.doi.org/10.3390/molecules30081827DOI Listing

Publication Analysis

Top Keywords

flavonoid derivatives
8
lung cancer
8
side effects
8
therapeutic agents
8
progress structure-activity
4
structure-activity relationship
4
relationship mechanism
4
mechanism flavonoid
4
derivatives treatment
4
treatment lung
4

Similar Publications

Purpose: SARS-CoV-2 infection may lead to a worse prognosis in COVID-19 patients by inducing syncytia formation which implies intercellular transmission and immune evasion. Hesperidin (HSD) and hesperetin (HST) are two citrus flavonoids that demonstrate the potential to interfere with spike/human angiotensin-converting enzyme-2 (hACE2) binding and show an inhibitory effect in the SARS-CoV-2 pseudovirus internalization model. Here, we determined the effects of HSD and HST to inhibit syncytia formation using in vitro cell models.

View Article and Find Full Text PDF

Epigallocatechin-3-gallate (EGCG), the predominant bioactive compound in green tea, has shown promise in lung cancer treatment; however, its molecular targets and antitumor mechanisms remain unclear. In this study, the therapeutic potential of EGCG against non-small cell lung (NSCLC) was evaluated, core targets were prioritized via network pharmacology, and molecular docking were employed to decipher the potential mechanism of action. Using bioinformatics, molecular docking, and functional enrichment analyses, 224 NSCLC-related targets were identified, with TP53, STAT3, AKT1, IL6, HSP90AA1, and JUN emerging as central hubs.

View Article and Find Full Text PDF

Acanthopanax sessiliflorus, belonging to the Araliaceae family, is used as medicinal herbs and dietary supplements, and can be consumed as seasoned vegetables, salads, pickles, functional tea, and wine. Their edible parts (shoots, leaves, fruis, and stems) are considered as a highly valuable food source with health benefits. The comparison of the qualitative and quantitative characteristics of functional compounds in these plant parts is still limited.

View Article and Find Full Text PDF

Multifaceted characterization of lactoferrin and (-)-epigallocatechin-3-gallate (EGCG) interactions: development of the pickering emulsions for microencapsulated functional foods.

Food Res Int

November 2025

Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China.

In this study, we explored the application of lactoferrin-(-)-epigallocatechin-3-gallate (LF-EGCG) complex with rapeseed, soybean, walnut, peanut and sesame oil for the preparation of Pickering emulsions and its spray-dried microcapsules. Spectroscopy and molecular docking revealed that LF-EGCG binds via hydrogen bonds, hydrophobic interactions, and van der Waals forces. Structural analysis demonstrated that 0.

View Article and Find Full Text PDF

The influence of different antioxidants on the properties of diacylglycerol based oleogels.

Food Res Int

November 2025

Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University,

Recently, the regulatory effect of natural antioxidants on oleogels has attracted the attention of scholars. Whether natural antioxidants with different structures can co-gel with gelators remains unclear. In this study, the impact of water-soluble (dihydroquercetin and epicatechin) and fat-soluble (lycopene and L-ascorbate palmitate) antioxidants on the physicochemical properties of diacylglycerol oleogels was investigated.

View Article and Find Full Text PDF