98%
921
2 minutes
20
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive malignancy with complex molecular underpinnings. Hodgkin lymphoma (HL), another distinct cancer type, shares several biological characteristics with HNSCC, particularly regarding immune system involvement. However, the molecular crosstalk between HNSCC and HL remains largely unexplored. This study aims to elucidate shared molecular mechanisms, identify potential diagnostic biomarkers, and uncover therapeutic targets through an integrative approach combining bioinformatics and machine learning techniques. Publicly available RNA sequencing datasets were utilized to identify differentially expressed genes (DEGs) in HNSCC, while weighted gene co-expression network analysis (WGCNA) was applied to uncover HL-associated gene modules. The intersection of HNSCC DEGs and HL-related modules was evaluated using protein-protein interaction (PPI) network analysis. Candidate hub genes were selected via machine learning algorithms, including LASSO regression, random forest, and support vector machine-recursive feature elimination (SVM-RFE). Prognostic and diagnostic values were assessed using survival analysis and ROC curves. Furthermore, scRNA-seq data were analyzed to assess gene expression in the tumor microenvironment, and drug sensitivity was evaluated to identify potential therapeutic agents. A total of 150 shared genes were identified at the intersection of HNSCC DEGs and HL-associated gene modules. PPI network analysis highlighted 16 candidate hub genes, among which IL6, CXCL13, and PLAU were prioritized through machine learning methods. Survival analysis revealed that high expression of CXCL13 and PLAU, and low expression of IL6, were significantly associated with poor prognosis in HNSCC patients. ROC curve analysis validated their diagnostic performance. Single-cell RNA-seq data confirmed the expression of these biomarkers in macrophages, epithelial cells, and fibroblasts within the tumor microenvironment. Drug sensitivity analysis identified Andrographolide, Rituximab, and Amiloride as potential therapeutic agents. This study identified IL6, CXCL13, and PLAU as critical biomarkers involved in immune regulation and tumor progression in both HNSCC and HL. These findings provide valuable insights into the shared molecular mechanisms and suggest novel therapeutic strategies for patients affected by these diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056187 | PMC |
http://dx.doi.org/10.1038/s41598-025-99017-5 | DOI Listing |
Bull Entomol Res
September 2025
Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa, Veracruz, México.
Insect pupae change morphologically (e.g., pigmentation of eyes, wings, setae and legs) during the intrapuparial period.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
While the cancer genome is well-studied, the nongenetic exposome of cancer remains elusive, particularly for regionally prevalent cancers with poor prognosis. Here, by employing a combined knowledge- and data-driven strategy, we profile the chemical exposome of plasma from 53 healthy controls, 14 esophagitis and 101 esophageal squamous cell carcinoma (ESCC) patients, and 46 esophageal tissues across 12 Chinese provinces, integrating inorganic, endogenous, and exogenous chemicals. We first show that components of the ESCC chemical exposome mediate the relationship between ESCC-related dietary/lifestyle factors and clinic health status indicators.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Department of Social Epidemiology, Graduate School of Medicine and School of Public Health, Kyoto University, Kyoto, Japan.
Importance: Previous studies have suggested that social participation helps prevent depression among older adults. However, evidence is lacking about whether the preventive benefits vary among individuals and who would benefit most.
Objective: To examine the sociodemographic, behavioral, and health-related heterogeneity in the association between social participation and depressive symptoms among older adults and to identify the individual characteristics among older adults expected to benefit the most from social participation.
Nutr Health
September 2025
Independent researcher, Rome, Italy.
Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.
View Article and Find Full Text PDFMed Biol Eng Comput
September 2025
Department of Computer Science, Università degli Studi di Bari Aldo Moro, Bari, Italy.
Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging.
View Article and Find Full Text PDF