98%
921
2 minutes
20
Maximum likelihood (ML) phylogenies of 109 tymoviruses, including three obtained directly from metagenomes, were calculated from all three open reading frames separately, but the concatenated sequences of their replicase and coat protein genes gave the most representative trees. ML phylogenies were also calculated from all recorded tymomvirus coat protein genes, and from datasets of the turnip yellow mosaic virus cluster, and separately of tomato yellow blotch, Andean potato latent and Andean potato mild mosaic viruses. These phylogenies showed that the basal divergence of tymoviruses occurred in a population infecting Eurasian brassicas (rosids), and more recently, one of the basal lineages diversified and adapted to infect some solanaceous (asterid) plants and crops of Central and South America. Heterochronous dating of the phylogenies failed, but heuristic comparisons based on patristic distances, branching patterns and external events suggested that the 'most recent common ancestor' of all known tymoviruses existed before the last Ice Age. Some lineages reached the Americas about 15,000 years ago. However, most spread of the few tymoviruses now found on more than one continent occurred during the past two centuries. The only recombinants were two sequences of Chiltepin yellow mosaic virus both with Nemesia ring necrosis virus as minor parent. Population genetic analysis found significant evidence of population contraction in the tymovirus populations infecting asterid hosts in the Americas. It also found the replicase and coat protein genes were significantly negatively selected. By contrast, the overlapping movement protein genes were positively selected which may help them adapt to new host species, including infecting economically significant crops. This knowledge about tymoviruses is important to plant biosecurity authorities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-01-25-0061-RE | DOI Listing |
Plant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFPlant J
September 2025
Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany.
Progestogens and androgens are steroids found in a wide range of plants, but little is known about their physiological functions. In this study, we sowed seeds of angiosperms on progestogen- and androgen-containing medium and analysed their morphological effects. We further investigated the effects of progesterone and testosterone on brassinosteroid profiles and gene expression in A.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Jiangxi Agricultural University, Nanchang 330045,
To discover novel preservatives for treating wood-decaying fungi, 48 novel eugenol quaternary ammonium salt derivatives were designed and synthesized. Among them, compounds , , , , , , and showed remarkable antifungal activity against (), affording EC values ranging from 2.11-7.
View Article and Find Full Text PDFPlant J
September 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.
View Article and Find Full Text PDFAm J Reprod Immunol
September 2025
Department of Laboratory Animal Science, Kunming Medical University, Kunming, China.
Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.
Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.